Machine Learning for Small Bodies in the Solar System - Supplemental Material
  • Home
  • Chapter 2, Part 1. Identification of Asteroid Families’ Members
  • Chapter 2, Part 2. Use of Machine Learning and Genetic Algorithms
  • Example of a notebook
  • Chapter 4. CNN for images
  • Chapter 6. Asteroid spectral classification
  • Chapter 7. Machine Learning Assisted Dynamical Classification of Trans-Neptunian Objects
  • MOPS magnitude estimator using a Convolutional Neural Network
    • Requirements for this notebook
    • Not using dropout
    • Download the data files
Machine Learning for Small Bodies in the Solar System - Supplemental Material
  • »
  • MOPS magnitude estimator using a Convolutional Neural Network

MOPS magnitude estimator using a Convolutional Neural Network¶

Requirements for this notebook¶

This code tested on version numbers shown

python >=3.7.12 numpy >= 1.19.5 scipy >= 1.7.3 keras >= 2.6.0 tensorflow >= 2.6.2 matplotlib >= 3.5.1

Not using dropout¶

Link about how dropout was responsible for the bias in the output fluxes:

https://towardsdatascience.com/pitfalls-with-dropout-and-batchnorm-in-regression-problems-39e02ce08e4d

This is useful reading!

In [1]:
Copied!
import os, time, sys, pickle, glob, gc

"""Import the basics: numpy, matplotlib, etc."""
import numpy as np
from scipy import interpolate as interp
import matplotlib.pyplot as pyl
import matplotlib.gridspec as gridspec
import pickle
"""Import keras and other ML tools"""
import tensorflow as tf
import keras
import keras.backend as backend

from ensemble_magregressor import *
import os, time, sys, pickle, glob, gc """Import the basics: numpy, matplotlib, etc.""" import numpy as np from scipy import interpolate as interp import matplotlib.pyplot as pyl import matplotlib.gridspec as gridspec import pickle """Import keras and other ML tools""" import tensorflow as tf import keras import keras.backend as backend from ensemble_magregressor import *

Download the data files¶

If you wish to train a new network based on the data used to train the networks published in Chapter 9, please set download_data = True, and execute the following cell. This will download roughly 3.2 gb of tarballs and expand.

In [8]:
Copied!
warps_url = "https://www.canfar.net/storage/vault/file/AstroDataCitationDOI/CISTI.CANFAR/24.0084/data/"

## set this to true to download the training data files
download_data = False


if not os.path.isfile('warps_data.tgz') and download_data:
    ## use curl
    #os.system(f'curl -o warps_data.tgz {warps_url}/warps_data.tgz')
    ## use wget
    os.system(f'wget {warps_url}/warps_data.tgz')
    #os.system('tar -xvzf warps_data.tgz')
    
if not os.path.isfile('kbmod_results_data.tgz') and download_data:
    ## use curl
    #os.system(f'curl -o kbmod_results_data.tgz {warps_url}/kbmod_results_data.tgz')
    ##use wget
    os.system(f'wget {warps_url}/kbmod_results_data.tgz')
    os.system('tar -xvzf kbmod_results_data.tgz')
warps_url = "https://www.canfar.net/storage/vault/file/AstroDataCitationDOI/CISTI.CANFAR/24.0084/data/" ## set this to true to download the training data files download_data = False if not os.path.isfile('warps_data.tgz') and download_data: ## use curl #os.system(f'curl -o warps_data.tgz {warps_url}/warps_data.tgz') ## use wget os.system(f'wget {warps_url}/warps_data.tgz') #os.system('tar -xvzf warps_data.tgz') if not os.path.isfile('kbmod_results_data.tgz') and download_data: ## use curl #os.system(f'curl -o kbmod_results_data.tgz {warps_url}/kbmod_results_data.tgz') ##use wget os.system(f'wget {warps_url}/kbmod_results_data.tgz') os.system('tar -xvzf kbmod_results_data.tgz')

Setup some hyper parameters and some variables for input data.

In [2]:
Copied!
visits = ['2022-08-01-AS1_July', #r
          '2022-08-22-AS2', #r 
          '2022-08-23-AS2', #r
          '2022-08-26-AS2', #r
            ]

save_model_path = 'MyNewModel'
print(f'Will save the trained model to {save_model_path}')

learning_rate = 0.00025
num_dense_nodes = 8
num_dense_layers = 2
num_filters = 6
train_epochs = 250
num_models = 5

## if you find that your model is reporting nan's for loss during training, reduce the batch_size. 768 seems to work well for the reallysmall model
batch_size = 4096 #768  
test_fraction = 0.05

useMedForNans = False #otherwise zero is used
image_data_type = 'float32'


double_flip = True # mirror vertically and horizontally augmentation
shuffle_augment = True
rotate_augment = True

gridType = '_tg'

## Keep sources within the range of brightness of interest. Feel free to explore
nukeFaint = 26.5
nukeBright = 21.
dist_lim = 3.0 #association to planted source
rate_diff_lim = 45.0 #pix per day

save_model_iteration = False
save_model = False

useSampleWeights = True


warps_path = f'./warps'

chips = []
for i in range(40):
    chips.append(str(i).zfill(2))

    
## setup an array that rotates all sources to have the same RA/Dec orientation. This may or may not be important
## the index is the # of 90 degree rotations applied to the stack
rots = np.array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0])
visits = ['2022-08-01-AS1_July', #r '2022-08-22-AS2', #r '2022-08-23-AS2', #r '2022-08-26-AS2', #r ] save_model_path = 'MyNewModel' print(f'Will save the trained model to {save_model_path}') learning_rate = 0.00025 num_dense_nodes = 8 num_dense_layers = 2 num_filters = 6 train_epochs = 250 num_models = 5 ## if you find that your model is reporting nan's for loss during training, reduce the batch_size. 768 seems to work well for the reallysmall model batch_size = 4096 #768 test_fraction = 0.05 useMedForNans = False #otherwise zero is used image_data_type = 'float32' double_flip = True # mirror vertically and horizontally augmentation shuffle_augment = True rotate_augment = True gridType = '_tg' ## Keep sources within the range of brightness of interest. Feel free to explore nukeFaint = 26.5 nukeBright = 21. dist_lim = 3.0 #association to planted source rate_diff_lim = 45.0 #pix per day save_model_iteration = False save_model = False useSampleWeights = True warps_path = f'./warps' chips = [] for i in range(40): chips.append(str(i).zfill(2)) ## setup an array that rotates all sources to have the same RA/Dec orientation. This may or may not be important ## the index is the # of 90 degree rotations applied to the stack rots = np.array([2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0])
Will save the trained model to MyNewModel

Read in the data.¶

Input data include the plantList files which record the magnitudes of injected artificial sources, and stamps files which are the shift-stacks of each candidate source. Zeropoints are used to convert magnitudes to instrumental

In [3]:
Copied!
with open('zeropoints.dat') as han:
    data = han.readlines()
zpos = {}
for i in range(len(data)):
    (v,c,z) = data[i].split()
    if v not in list(zpos.keys()):
        zpos[v] = {}
    zpos[v][c] = float(z)
    
stamp_files, fs, kb_xys, zeropoints = [], [], [], []
counter = 0
for j, v in enumerate(visits):
    for i, c in enumerate(chips):
        
        
        stamps_path = f'{warps_path}/{v}'
        plantLists_path = f'{warps_path}/{v}/'
        kbmod_results_path = f'./kbmod_results/{v}/results_{c}/'

        stamp_files.append(f'{stamps_path}/stamps{gridType}_{c}_w_sr.pickle')

        zpo = zpos[v][c]    

        
        ### load the kbmod results
        kb_xy = []
        with open(f'{kbmod_results_path}/results_.txt') as han:
            data = han.readlines()

        for ii in range(len(data)):
            s = data[ii].split()
            x, y = float(s[5]), float(s[7])
            repeat = False
            for jj in range(len(kb_xy)):
                if kb_xy[jj][0]==x and kb_xy[jj][1]==y:
                    repeat = True
                    break
            if not repeat:
                kb_xy.append([float(s[5]) , float(s[7]) , float(s[9]), float(s[11]), float(s[1]), 0.0])
        kb_xy = np.array(kb_xy)
        
        ### load the plantlist sources
        p_xy = []
        plantLists = glob.glob(f'{plantLists_path}/{c}/*plantList')
        plantLists.sort()

        with open(plantLists[0]) as han:
            data = han.readlines()
                
        for ii in range(1,len(data)):
            s = data[ii].split()
            x,y = float(s[3]), float(s[4])
            rate = float(s[5])*24./0.187
            repeat = False
            for jj in range(len(p_xy)):
                if p_xy[jj][0] == x and p_xy[jj][1]==y:
                    p_xy[jj][2]-=0.75
                    repeat = True

            if not repeat:
                p_xy.append([x, y, float(s[9]), rate, 0])
                
        if len(p_xy)>0:
            p_xy = np.array(p_xy)
            p_xy = p_xy[np.argsort(p_xy[:,2])]
            p_xy = p_xy[np.where((p_xy[:,2]>nukeBright)&(p_xy[:,2]<nukeFaint))]

            #label the good and bad sources
            for ii in range(len(p_xy)):
                d = ((p_xy[ii, 0] - kb_xy[:, 0])**2 + (p_xy[ii, 1] - kb_xy[:, 1])**2 )**0.5
                d_rate = (p_xy[ii, 3] - (kb_xy[:, 2]**2 + kb_xy[:, 3]**2)**0.5)
                ww = np.where((d<dist_lim)&(np.abs(d_rate)<rate_diff_lim))
                if len(ww[0])>0:
                    for arg in ww[0]:
                        kb_xy[arg,-1] = p_xy[ii,2]-zpo
                        
        w_good = np.where(kb_xy[:,-1]!=0)
        
        #load the stamps
        with open(stamp_files[-1], 'rb') as han:
            f = pickle.load(han)
        
        if rots[counter%len(chips)]!=0:# and rots[counter%len(chips)]!=2:
            f = np.rot90(f, k=-rots[counter%len(chips)], axes=(1, 2))
        counter+=1

        ### clip to avoid the crazy min pixel values
        f = np.clip(f, -3500., np.max(f))
        f_med = np.nanmedian(f)
        f = f[w_good]
        kb_xy = kb_xy[w_good]

        fs.append(f)
        kb_xys.append(kb_xy)
        zeropoints.append(np.zeros(len(f), dtype='float64')+zpo)
        print(v, c,f.shape)

sns_frames = np.concatenate(fs)
kb_xys = np.concatenate(kb_xys)
zeropoints = np.concatenate(zeropoints)

print('Total sources:', zeropoints.shape)
with open('zeropoints.dat') as han: data = han.readlines() zpos = {} for i in range(len(data)): (v,c,z) = data[i].split() if v not in list(zpos.keys()): zpos[v] = {} zpos[v][c] = float(z) stamp_files, fs, kb_xys, zeropoints = [], [], [], [] counter = 0 for j, v in enumerate(visits): for i, c in enumerate(chips): stamps_path = f'{warps_path}/{v}' plantLists_path = f'{warps_path}/{v}/' kbmod_results_path = f'./kbmod_results/{v}/results_{c}/' stamp_files.append(f'{stamps_path}/stamps{gridType}_{c}_w_sr.pickle') zpo = zpos[v][c] ### load the kbmod results kb_xy = [] with open(f'{kbmod_results_path}/results_.txt') as han: data = han.readlines() for ii in range(len(data)): s = data[ii].split() x, y = float(s[5]), float(s[7]) repeat = False for jj in range(len(kb_xy)): if kb_xy[jj][0]==x and kb_xy[jj][1]==y: repeat = True break if not repeat: kb_xy.append([float(s[5]) , float(s[7]) , float(s[9]), float(s[11]), float(s[1]), 0.0]) kb_xy = np.array(kb_xy) ### load the plantlist sources p_xy = [] plantLists = glob.glob(f'{plantLists_path}/{c}/*plantList') plantLists.sort() with open(plantLists[0]) as han: data = han.readlines() for ii in range(1,len(data)): s = data[ii].split() x,y = float(s[3]), float(s[4]) rate = float(s[5])*24./0.187 repeat = False for jj in range(len(p_xy)): if p_xy[jj][0] == x and p_xy[jj][1]==y: p_xy[jj][2]-=0.75 repeat = True if not repeat: p_xy.append([x, y, float(s[9]), rate, 0]) if len(p_xy)>0: p_xy = np.array(p_xy) p_xy = p_xy[np.argsort(p_xy[:,2])] p_xy = p_xy[np.where((p_xy[:,2]>nukeBright)&(p_xy[:,2]0: for arg in ww[0]: kb_xy[arg,-1] = p_xy[ii,2]-zpo w_good = np.where(kb_xy[:,-1]!=0) #load the stamps with open(stamp_files[-1], 'rb') as han: f = pickle.load(han) if rots[counter%len(chips)]!=0:# and rots[counter%len(chips)]!=2: f = np.rot90(f, k=-rots[counter%len(chips)], axes=(1, 2)) counter+=1 ### clip to avoid the crazy min pixel values f = np.clip(f, -3500., np.max(f)) f_med = np.nanmedian(f) f = f[w_good] kb_xy = kb_xy[w_good] fs.append(f) kb_xys.append(kb_xy) zeropoints.append(np.zeros(len(f), dtype='float64')+zpo) print(v, c,f.shape) sns_frames = np.concatenate(fs) kb_xys = np.concatenate(kb_xys) zeropoints = np.concatenate(zeropoints) print('Total sources:', zeropoints.shape)
2022-08-01-AS1_July 00 (45, 43, 43)
2022-08-01-AS1_July 01 (63, 43, 43)
2022-08-01-AS1_July 02 (55, 43, 43)
2022-08-01-AS1_July 03 (54, 43, 43)
2022-08-01-AS1_July 04 (58, 43, 43)
2022-08-01-AS1_July 05 (59, 43, 43)
2022-08-01-AS1_July 06 (70, 43, 43)
2022-08-01-AS1_July 07 (51, 43, 43)
2022-08-01-AS1_July 08 (64, 43, 43)
2022-08-01-AS1_July 09 (59, 43, 43)
2022-08-01-AS1_July 10 (58, 43, 43)
2022-08-01-AS1_July 11 (58, 43, 43)
2022-08-01-AS1_July 12 (60, 43, 43)
2022-08-01-AS1_July 13 (45, 43, 43)
2022-08-01-AS1_July 14 (65, 43, 43)
2022-08-01-AS1_July 15 (57, 43, 43)
2022-08-01-AS1_July 16 (63, 43, 43)
2022-08-01-AS1_July 17 (55, 43, 43)
2022-08-01-AS1_July 18 (62, 43, 43)
2022-08-01-AS1_July 19 (62, 43, 43)
2022-08-01-AS1_July 20 (58, 43, 43)
2022-08-01-AS1_July 21 (57, 43, 43)
2022-08-01-AS1_July 22 (51, 43, 43)
2022-08-01-AS1_July 23 (53, 43, 43)
2022-08-01-AS1_July 24 (49, 43, 43)
2022-08-01-AS1_July 25 (54, 43, 43)
2022-08-01-AS1_July 26 (50, 43, 43)
2022-08-01-AS1_July 27 (41, 43, 43)
2022-08-01-AS1_July 28 (48, 43, 43)
2022-08-01-AS1_July 29 (60, 43, 43)
2022-08-01-AS1_July 30 (51, 43, 43)
2022-08-01-AS1_July 31 (46, 43, 43)
2022-08-01-AS1_July 32 (50, 43, 43)
2022-08-01-AS1_July 33 (48, 43, 43)
2022-08-01-AS1_July 34 (58, 43, 43)
2022-08-01-AS1_July 35 (45, 43, 43)
2022-08-01-AS1_July 36 (56, 43, 43)
2022-08-01-AS1_July 37 (53, 43, 43)
2022-08-01-AS1_July 38 (53, 43, 43)
2022-08-01-AS1_July 39 (56, 43, 43)
2022-08-22-AS2 00 (57, 43, 43)
2022-08-22-AS2 01 (46, 43, 43)
2022-08-22-AS2 02 (54, 43, 43)
2022-08-22-AS2 03 (55, 43, 43)
2022-08-22-AS2 04 (63, 43, 43)
2022-08-22-AS2 05 (56, 43, 43)
2022-08-22-AS2 06 (72, 43, 43)
2022-08-22-AS2 07 (63, 43, 43)
2022-08-22-AS2 08 (45, 43, 43)
2022-08-22-AS2 09 (52, 43, 43)
2022-08-22-AS2 10 (53, 43, 43)
2022-08-22-AS2 11 (53, 43, 43)
2022-08-22-AS2 12 (57, 43, 43)
2022-08-22-AS2 13 (54, 43, 43)
2022-08-22-AS2 14 (69, 43, 43)
2022-08-22-AS2 15 (61, 43, 43)
2022-08-22-AS2 16 (46, 43, 43)
2022-08-22-AS2 17 (65, 43, 43)
2022-08-22-AS2 18 (59, 43, 43)
2022-08-22-AS2 19 (60, 43, 43)
2022-08-22-AS2 20 (54, 43, 43)
2022-08-22-AS2 21 (61, 43, 43)
2022-08-22-AS2 22 (59, 43, 43)
2022-08-22-AS2 23 (59, 43, 43)
2022-08-22-AS2 24 (51, 43, 43)
2022-08-22-AS2 25 (47, 43, 43)
2022-08-22-AS2 26 (57, 43, 43)
2022-08-22-AS2 27 (56, 43, 43)
2022-08-22-AS2 28 (55, 43, 43)
2022-08-22-AS2 29 (52, 43, 43)
2022-08-22-AS2 30 (65, 43, 43)
2022-08-22-AS2 31 (55, 43, 43)
2022-08-22-AS2 32 (43, 43, 43)
2022-08-22-AS2 33 (49, 43, 43)
2022-08-22-AS2 34 (55, 43, 43)
2022-08-22-AS2 35 (48, 43, 43)
2022-08-22-AS2 36 (60, 43, 43)
2022-08-22-AS2 37 (62, 43, 43)
2022-08-22-AS2 38 (60, 43, 43)
2022-08-22-AS2 39 (55, 43, 43)
2022-08-23-AS2 00 (62, 43, 43)
2022-08-23-AS2 01 (47, 43, 43)
2022-08-23-AS2 02 (57, 43, 43)
2022-08-23-AS2 03 (66, 43, 43)
2022-08-23-AS2 04 (60, 43, 43)
2022-08-23-AS2 05 (56, 43, 43)
2022-08-23-AS2 06 (71, 43, 43)
2022-08-23-AS2 07 (66, 43, 43)
2022-08-23-AS2 08 (46, 43, 43)
2022-08-23-AS2 09 (53, 43, 43)
2022-08-23-AS2 10 (52, 43, 43)
2022-08-23-AS2 11 (54, 43, 43)
2022-08-23-AS2 12 (62, 43, 43)
2022-08-23-AS2 13 (60, 43, 43)
2022-08-23-AS2 14 (72, 43, 43)
2022-08-23-AS2 15 (65, 43, 43)
2022-08-23-AS2 16 (58, 43, 43)
2022-08-23-AS2 17 (64, 43, 43)
2022-08-23-AS2 18 (57, 43, 43)
2022-08-23-AS2 19 (59, 43, 43)
2022-08-23-AS2 20 (54, 43, 43)
2022-08-23-AS2 21 (56, 43, 43)
2022-08-23-AS2 22 (55, 43, 43)
2022-08-23-AS2 23 (60, 43, 43)
2022-08-23-AS2 24 (52, 43, 43)
2022-08-23-AS2 25 (45, 43, 43)
2022-08-23-AS2 26 (52, 43, 43)
2022-08-23-AS2 27 (59, 43, 43)
2022-08-23-AS2 28 (46, 43, 43)
2022-08-23-AS2 29 (51, 43, 43)
2022-08-23-AS2 30 (64, 43, 43)
2022-08-23-AS2 31 (54, 43, 43)
2022-08-23-AS2 32 (45, 43, 43)
2022-08-23-AS2 33 (52, 43, 43)
2022-08-23-AS2 34 (54, 43, 43)
2022-08-23-AS2 35 (44, 43, 43)
2022-08-23-AS2 36 (58, 43, 43)
2022-08-23-AS2 37 (71, 43, 43)
2022-08-23-AS2 38 (57, 43, 43)
2022-08-23-AS2 39 (53, 43, 43)
2022-08-26-AS2 00 (60, 43, 43)
2022-08-26-AS2 01 (58, 43, 43)
2022-08-26-AS2 02 (61, 43, 43)
2022-08-26-AS2 03 (65, 43, 43)
2022-08-26-AS2 04 (58, 43, 43)
2022-08-26-AS2 05 (64, 43, 43)
2022-08-26-AS2 06 (80, 43, 43)
2022-08-26-AS2 07 (66, 43, 43)
2022-08-26-AS2 08 (58, 43, 43)
2022-08-26-AS2 09 (62, 43, 43)
2022-08-26-AS2 10 (52, 43, 43)
2022-08-26-AS2 11 (58, 43, 43)
2022-08-26-AS2 12 (64, 43, 43)
2022-08-26-AS2 13 (56, 43, 43)
2022-08-26-AS2 14 (64, 43, 43)
2022-08-26-AS2 15 (60, 43, 43)
2022-08-26-AS2 16 (66, 43, 43)
2022-08-26-AS2 17 (65, 43, 43)
2022-08-26-AS2 18 (70, 43, 43)
2022-08-26-AS2 19 (59, 43, 43)
2022-08-26-AS2 20 (71, 43, 43)
2022-08-26-AS2 21 (58, 43, 43)
2022-08-26-AS2 22 (58, 43, 43)
2022-08-26-AS2 23 (57, 43, 43)
2022-08-26-AS2 24 (50, 43, 43)
2022-08-26-AS2 25 (64, 43, 43)
2022-08-26-AS2 26 (54, 43, 43)
2022-08-26-AS2 27 (62, 43, 43)
2022-08-26-AS2 28 (61, 43, 43)
2022-08-26-AS2 29 (60, 43, 43)
2022-08-26-AS2 30 (62, 43, 43)
2022-08-26-AS2 31 (54, 43, 43)
2022-08-26-AS2 32 (50, 43, 43)
2022-08-26-AS2 33 (52, 43, 43)
2022-08-26-AS2 34 (58, 43, 43)
2022-08-26-AS2 35 (48, 43, 43)
2022-08-26-AS2 36 (59, 43, 43)
2022-08-26-AS2 37 (83, 43, 43)
2022-08-26-AS2 38 (68, 43, 43)
2022-08-26-AS2 39 (50, 43, 43)
Total sources: (9137,)
In [4]:
Copied!
par_save_dic = {}

par_save_dic['visits'] = visits
par_save_dic['nukeBright'] = nukeBright
par_save_dic['nukeFaint'] = nukeFaint
par_save_dic['image_data_type'] = image_data_type


saved_par_dic = {
    'visits': None,
    'nukeBright': None,
    'nukeFaint': None,
    'image_data_type': None
}
par_save_dic = {} par_save_dic['visits'] = visits par_save_dic['nukeBright'] = nukeBright par_save_dic['nukeFaint'] = nukeFaint par_save_dic['image_data_type'] = image_data_type saved_par_dic = { 'visits': None, 'nukeBright': None, 'nukeFaint': None, 'image_data_type': None }
In [5]:
Copied!
###
#sort the labels and normalize

sns_labels = kb_xys[:, -1]

print('Min and max magnitudes:', np.min(sns_labels), np.max(sns_labels))
print()

sns_labels = 10.0**(-0.4*sns_labels)
Flux_std = np.std(sns_labels)
Flux_mean = np.mean(sns_labels)
print('Flux_mean/std:', Flux_mean, Flux_std)

sns_labels = sns_labels/Flux_std
print('Min and max normalized fluxes:', np.min(sns_labels), np.max(sns_labels))
### #sort the labels and normalize sns_labels = kb_xys[:, -1] print('Min and max magnitudes:', np.min(sns_labels), np.max(sns_labels)) print() sns_labels = 10.0**(-0.4*sns_labels) Flux_std = np.std(sns_labels) Flux_mean = np.mean(sns_labels) print('Flux_mean/std:', Flux_mean, Flux_std) sns_labels = sns_labels/Flux_std print('Min and max normalized fluxes:', np.min(sns_labels), np.max(sns_labels))
Min and max magnitudes: -10.302000000000003 -5.863000000000003

Flux_mean/std: 3406.7642960502803 3380.2104471463504
Min and max normalized fluxes: 0.06550225634502951 3.9071155947150658
In [6]:
Copied!
#normalize the input image tensors

if useMedForNans:
    med = np.nanmedian(sns_frames)
else:
    med = 0.0
#mini = np.nanmin(sns_frames)
#sns_frames[np.where(np.isnan(sns_frames))] = mini
    
w_nan = np.where(np.isnan(sns_frames))


sns_frames[w_nan] = np.nan



normed_sns_frames = sns_frames

mean = np.nanmean(normed_sns_frames)
std = np.nanstd(normed_sns_frames)
normed_sns_frames -= mean
normed_sns_frames /= std
normed_sns_frames[w_nan] = 1.0 # 0.0

print('Normalized frame min and max:', np.nanmin(normed_sns_frames), np.nanmax(normed_sns_frames),'\n')




# expand the image data to shape (:, :, :, 1) for the CNN
normed_sns_frames = np.expand_dims(normed_sns_frames, axis=-1)
#normalize the input image tensors if useMedForNans: med = np.nanmedian(sns_frames) else: med = 0.0 #mini = np.nanmin(sns_frames) #sns_frames[np.where(np.isnan(sns_frames))] = mini w_nan = np.where(np.isnan(sns_frames)) sns_frames[w_nan] = np.nan normed_sns_frames = sns_frames mean = np.nanmean(normed_sns_frames) std = np.nanstd(normed_sns_frames) normed_sns_frames -= mean normed_sns_frames /= std normed_sns_frames[w_nan] = 1.0 # 0.0 print('Normalized frame min and max:', np.nanmin(normed_sns_frames), np.nanmax(normed_sns_frames),'\n') # expand the image data to shape (:, :, :, 1) for the CNN normed_sns_frames = np.expand_dims(normed_sns_frames, axis=-1)
Normalized frame min and max: -16.482555 591.32715 

Augment the data.¶

Augmentations provide are shuffle: 1 pixel shifts in the cardinal directions; double_flip: flipping along the two axes; and rotate: rotating the images at 90, 180, and 270 degrees.

In [7]:
Copied!
if shuffle_augment:
    a = np.copy(normed_sns_frames)
    b = np.copy(normed_sns_frames)
    c = np.copy(normed_sns_frames)
    d = np.copy(normed_sns_frames)

    a[:,:-1,:,:] = normed_sns_frames[:,1:,:,:]
    b[:,1:,:,:] = normed_sns_frames[:,:-1,:,:]
    c[:,:, :-1,:] = normed_sns_frames[:,:,1:,:]
    d[:,:, 1:,:] = normed_sns_frames[:,:,:-1,:]

    normed_sns_frames = np.concatenate([normed_sns_frames,a,b,c,d])#, A, B, C, D])
    sns_labels = np.concatenate([sns_labels, np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels)])#, np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels)])
    zeropoints = np.concatenate([zeropoints, np.copy(zeropoints), np.copy(zeropoints), np.copy(zeropoints), np.copy(zeropoints)])
    kb_xys = np.concatenate([kb_xys, np.copy(kb_xys), np.copy(kb_xys), np.copy(kb_xys), np.copy(kb_xys)])

if double_flip:

    normed_sns_frames = np.concatenate([normed_sns_frames, normed_sns_frames[:, ::-1, ::-1, :]])
    sns_labels = np.concatenate([sns_labels, sns_labels])
    zeropoints = np.concatenate([zeropoints, np.copy(zeropoints)])
    kb_xys = np.concatenate([kb_xys, np.copy(kb_xys)])
    
if rotate_augment:
    normed_sns_frames = np.concatenate([normed_sns_frames, np.rot90(normed_sns_frames, k=1, axes=(1,2)), np.rot90(normed_sns_frames, k=-1, axes=(1,2))])
    sns_labels = np.concatenate([sns_labels, sns_labels, sns_labels])
    zeropoints = np.concatenate([zeropoints, np.copy(zeropoints), np.copy(zeropoints)])
    kb_xys = np.concatenate([kb_xys, np.copy(kb_xys), np.copy(kb_xys)])
if shuffle_augment: a = np.copy(normed_sns_frames) b = np.copy(normed_sns_frames) c = np.copy(normed_sns_frames) d = np.copy(normed_sns_frames) a[:,:-1,:,:] = normed_sns_frames[:,1:,:,:] b[:,1:,:,:] = normed_sns_frames[:,:-1,:,:] c[:,:, :-1,:] = normed_sns_frames[:,:,1:,:] d[:,:, 1:,:] = normed_sns_frames[:,:,:-1,:] normed_sns_frames = np.concatenate([normed_sns_frames,a,b,c,d])#, A, B, C, D]) sns_labels = np.concatenate([sns_labels, np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels)])#, np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels), np.copy(sns_labels)]) zeropoints = np.concatenate([zeropoints, np.copy(zeropoints), np.copy(zeropoints), np.copy(zeropoints), np.copy(zeropoints)]) kb_xys = np.concatenate([kb_xys, np.copy(kb_xys), np.copy(kb_xys), np.copy(kb_xys), np.copy(kb_xys)]) if double_flip: normed_sns_frames = np.concatenate([normed_sns_frames, normed_sns_frames[:, ::-1, ::-1, :]]) sns_labels = np.concatenate([sns_labels, sns_labels]) zeropoints = np.concatenate([zeropoints, np.copy(zeropoints)]) kb_xys = np.concatenate([kb_xys, np.copy(kb_xys)]) if rotate_augment: normed_sns_frames = np.concatenate([normed_sns_frames, np.rot90(normed_sns_frames, k=1, axes=(1,2)), np.rot90(normed_sns_frames, k=-1, axes=(1,2))]) sns_labels = np.concatenate([sns_labels, sns_labels, sns_labels]) zeropoints = np.concatenate([zeropoints, np.copy(zeropoints), np.copy(zeropoints)]) kb_xys = np.concatenate([kb_xys, np.copy(kb_xys), np.copy(kb_xys)])
In [8]:
Copied!
## it's always a good idea to check for nans
print(np.where(np.isnan(normed_sns_frames)))
print(np.where(np.isnan(sns_labels)))
print(np.where(np.isnan(zeropoints)))
## it's always a good idea to check for nans print(np.where(np.isnan(normed_sns_frames))) print(np.where(np.isnan(sns_labels))) print(np.where(np.isnan(zeropoints)))
(array([], dtype=int64), array([], dtype=int64), array([], dtype=int64), array([], dtype=int64))
(array([], dtype=int64),)
(array([], dtype=int64),)

Training and Test/Validation Samples¶

In [9]:
Copied!
## always a good idea to confirm that the training x and y arrays have the same # of elements
print(sns_labels.shape, normed_sns_frames.shape)

test_index = (np.random.rand(int(len(sns_labels)*(test_fraction)))*len(sns_labels)).astype('int')

train_index = []
for i in range(len(sns_labels)):
    if i not in test_index:
        train_index.append(i)
train_index = np.array(train_index)

X_train, X_test = normed_sns_frames[train_index], normed_sns_frames[test_index]
y_train, y_test = sns_labels[train_index], sns_labels[test_index]
Z_train, Z_test = zeropoints[train_index], zeropoints[test_index]

#del normed_sns_frames

print(X_train.shape)


print('Number of images in the training sample: ', X_train.shape[0])
print('Number of images in the test sample: ', X_test.shape[0])
## always a good idea to confirm that the training x and y arrays have the same # of elements print(sns_labels.shape, normed_sns_frames.shape) test_index = (np.random.rand(int(len(sns_labels)*(test_fraction)))*len(sns_labels)).astype('int') train_index = [] for i in range(len(sns_labels)): if i not in test_index: train_index.append(i) train_index = np.array(train_index) X_train, X_test = normed_sns_frames[train_index], normed_sns_frames[test_index] y_train, y_test = sns_labels[train_index], sns_labels[test_index] Z_train, Z_test = zeropoints[train_index], zeropoints[test_index] #del normed_sns_frames print(X_train.shape) print('Number of images in the training sample: ', X_train.shape[0]) print('Number of images in the test sample: ', X_test.shape[0])
(274110,) (274110, 43, 43, 1)
(260720, 43, 43, 1)
Number of images in the training sample:  260720
Number of images in the test sample:  13705

Histogram of the input magnitudes.¶

Generate a set of sample weights. Look at the flux distribution, and then interpolate, and invert to generate weights. nbins=100 seems to result in a smooth flux_pred/flux_train and test curve. Extend the weights histogram to the min and max of sns_labels so to avoid interpolation issues.

In [10]:
Copied!
nbins = 25

fig = pyl.figure(figsize=(10,10))
sp = fig.add_subplot(111)
(y, x) = pyl.hist(sns_labels, bins=nbins)[:2]


pyl.plot([0.35, 0.35], sp.get_ylim())

bins = (x[1:]+x[:-1])/2.0


pyl.scatter(bins, y, c='r',zorder=10)
pyl.show()

hist_weights = np.max(y)/(y*nbins)

hist_weights = np.concatenate([np.array([hist_weights[0]]), 
                               hist_weights, 
                               np.array([hist_weights[-1]])])
bins = np.concatenate([np.array([np.min(sns_labels)]), 
                    bins, 
                    np.array([np.max(sns_labels)])])

hist_weights[np.where(np.isinf(hist_weights))] = 0.0


fig = pyl.figure(figsize=(10,10))
pyl.scatter(bins, hist_weights)
pyl.show()

weight_func = interp.interp1d(bins, hist_weights)

sample_weights = weight_func(sns_labels).astype('float32')
mean_sample_weights = np.mean(sample_weights)
sample_weights /= mean_sample_weights

train_weights = sample_weights[train_index]
test_weights = sample_weights[test_index]
nbins = 25 fig = pyl.figure(figsize=(10,10)) sp = fig.add_subplot(111) (y, x) = pyl.hist(sns_labels, bins=nbins)[:2] pyl.plot([0.35, 0.35], sp.get_ylim()) bins = (x[1:]+x[:-1])/2.0 pyl.scatter(bins, y, c='r',zorder=10) pyl.show() hist_weights = np.max(y)/(y*nbins) hist_weights = np.concatenate([np.array([hist_weights[0]]), hist_weights, np.array([hist_weights[-1]])]) bins = np.concatenate([np.array([np.min(sns_labels)]), bins, np.array([np.max(sns_labels)])]) hist_weights[np.where(np.isinf(hist_weights))] = 0.0 fig = pyl.figure(figsize=(10,10)) pyl.scatter(bins, hist_weights) pyl.show() weight_func = interp.interp1d(bins, hist_weights) sample_weights = weight_func(sns_labels).astype('float32') mean_sample_weights = np.mean(sample_weights) sample_weights /= mean_sample_weights train_weights = sample_weights[train_index] test_weights = sample_weights[test_index]

Fitting the Neural Network Model¶

Here we train the neural network model defined above. The training session will output loss, and accuracy at each epoch. We also plot the progression of the loss and accuracy with respect to training epochs after the training is completed.

In [11]:
Copied!
backend.clear_session()

gc.collect()

cn_model = convnet_model(X_train.shape[1:], 
                         learning_rate = learning_rate*4,
                         num_dense_nodes = num_dense_nodes,
                         num_dense_layers = num_dense_layers,
                         num_models = num_models, num_filters = num_filters)
                             
cn_model.compile()
cn_model.model_.summary()


start = time.time()

cn_model.train_models(X_train, y_train, sample_weights = train_weights,
                      train_epochs = train_epochs, 
                      batch_size=int(batch_size), 
                      useSampleWeights = useSampleWeights)


end = time.time()
print('Process completed in', round(end-start, 2), ' seconds')
backend.clear_session() gc.collect() cn_model = convnet_model(X_train.shape[1:], learning_rate = learning_rate*4, num_dense_nodes = num_dense_nodes, num_dense_layers = num_dense_layers, num_models = num_models, num_filters = num_filters) cn_model.compile() cn_model.model_.summary() start = time.time() cn_model.train_models(X_train, y_train, sample_weights = train_weights, train_epochs = train_epochs, batch_size=int(batch_size), useSampleWeights = useSampleWeights) end = time.time() print('Process completed in', round(end-start, 2), ' seconds')
2024-04-18 18:23:05.361370: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:05.374168: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:05.376408: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:05.379878: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  SSE4.1 SSE4.2 AVX AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-04-18 18:23:05.403570: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:05.405917: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:05.408033: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:07.365550: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:07.367215: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:07.368635: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2024-04-18 18:23:07.369911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 18043 MB memory:  -> device: 0, name: NVIDIA A100-PCIE-40GB MIG 3g.20gb, pci bus id: 0000:00:07.0, compute capability: 8.0
Model: "model_4"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input (InputLayer)              [(None, 43, 43, 1)]  0                                            
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 41, 41, 6)    60          input[0][0]                      
__________________________________________________________________________________________________
max_pooling2d_12 (MaxPooling2D) (None, 21, 21, 6)    0           conv2d_12[0][0]                  
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 19, 19, 6)    330         max_pooling2d_12[0][0]           
__________________________________________________________________________________________________
max_pooling2d_13 (MaxPooling2D) (None, 9, 9, 6)      0           conv2d_13[0][0]                  
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 7, 7, 3)      165         max_pooling2d_13[0][0]           
__________________________________________________________________________________________________
max_pooling2d_14 (MaxPooling2D) (None, 3, 3, 3)      0           conv2d_14[0][0]                  
__________________________________________________________________________________________________
flatten_4 (Flatten)             (None, 27)           0           max_pooling2d_14[0][0]           
__________________________________________________________________________________________________
dense_8 (Dense)                 (None, 8)            224         flatten_4[0][0]                  
__________________________________________________________________________________________________
dense_9 (Dense)                 (None, 8)            72          dense_8[0][0]                    
__________________________________________________________________________________________________
mu (Dense)                      (None, 1)            9           dense_9[0][0]                    
__________________________________________________________________________________________________
sigma (Dense)                   (None, 1)            9           dense_9[0][0]                    
__________________________________________________________________________________________________
outputs (Concatenate)           (None, 2)            0           mu[0][0]                         
                                                                 sigma[0][0]                      
==================================================================================================
Total params: 869
Trainable params: 869
Non-trainable params: 0
__________________________________________________________________________________________________

Training model 1 of 5.
2024-04-18 18:23:44.519403: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
Epoch 1/250
2024-04-18 18:23:57.792846: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8201
2024-04-18 18:24:00.068096: I tensorflow/core/platform/default/subprocess.cc:304] Start cannot spawn child process: No such file or directory
2024-04-18 18:24:01.711546: I tensorflow/stream_executor/cuda/cuda_blas.cc:1760] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
64/64 [==============================] - 22s 44ms/step - loss: 0.9640 - mean_absolute_error: 0.6547
Epoch 2/250
64/64 [==============================] - 2s 37ms/step - loss: -0.6215 - mean_absolute_error: 0.4630
Epoch 3/250
64/64 [==============================] - 2s 36ms/step - loss: -1.2326 - mean_absolute_error: 0.4628
Epoch 4/250
64/64 [==============================] - 2s 34ms/step - loss: -1.5025 - mean_absolute_error: 0.4792
Epoch 5/250
64/64 [==============================] - 2s 34ms/step - loss: -1.6371 - mean_absolute_error: 0.4847
Epoch 6/250
64/64 [==============================] - 2s 34ms/step - loss: -1.7096 - mean_absolute_error: 0.4877
Epoch 7/250
64/64 [==============================] - 2s 34ms/step - loss: -1.7425 - mean_absolute_error: 0.4895
Epoch 8/250
64/64 [==============================] - 2s 34ms/step - loss: -1.7844 - mean_absolute_error: 0.4900
Epoch 9/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8057 - mean_absolute_error: 0.4918
Epoch 10/250
64/64 [==============================] - 2s 35ms/step - loss: -1.8291 - mean_absolute_error: 0.4919
Epoch 11/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8479 - mean_absolute_error: 0.4921
Epoch 12/250
64/64 [==============================] - 2s 36ms/step - loss: -1.8616 - mean_absolute_error: 0.4930
Epoch 13/250
64/64 [==============================] - 2s 37ms/step - loss: -1.8891 - mean_absolute_error: 0.4938
Epoch 14/250
64/64 [==============================] - 2s 35ms/step - loss: -1.9022 - mean_absolute_error: 0.4937
Epoch 15/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9188 - mean_absolute_error: 0.4939
Epoch 16/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9297 - mean_absolute_error: 0.4941
Epoch 17/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9376 - mean_absolute_error: 0.4943
Epoch 18/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9468 - mean_absolute_error: 0.4944
Epoch 19/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9560 - mean_absolute_error: 0.4947
Epoch 20/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9631 - mean_absolute_error: 0.4950
Epoch 21/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9717 - mean_absolute_error: 0.4951
Epoch 22/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9819 - mean_absolute_error: 0.4952
Epoch 23/250
64/64 [==============================] - 2s 35ms/step - loss: -1.9829 - mean_absolute_error: 0.4955
Epoch 24/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9926 - mean_absolute_error: 0.4959
Epoch 25/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0003 - mean_absolute_error: 0.4961
Epoch 26/250
64/64 [==============================] - 2s 36ms/step - loss: -2.0074 - mean_absolute_error: 0.4963
Epoch 27/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0116 - mean_absolute_error: 0.4964
Epoch 28/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0166 - mean_absolute_error: 0.4965
Epoch 29/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0263 - mean_absolute_error: 0.4970
Epoch 30/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0285 - mean_absolute_error: 0.4967
Epoch 31/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0370 - mean_absolute_error: 0.4972
Epoch 32/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0359 - mean_absolute_error: 0.4972
Epoch 33/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0418 - mean_absolute_error: 0.4971
Epoch 34/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0490 - mean_absolute_error: 0.4977
Epoch 35/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0527 - mean_absolute_error: 0.4977
Epoch 36/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0556 - mean_absolute_error: 0.4979
Epoch 37/250
64/64 [==============================] - 2s 36ms/step - loss: -2.0546 - mean_absolute_error: 0.4980
Epoch 38/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0641 - mean_absolute_error: 0.4981
Epoch 39/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0648 - mean_absolute_error: 0.4982
Epoch 40/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0735 - mean_absolute_error: 0.4984
Epoch 41/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0736 - mean_absolute_error: 0.4984
Epoch 42/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0720 - mean_absolute_error: 0.4987
Epoch 43/250
64/64 [==============================] - 2s 32ms/step - loss: -2.0822 - mean_absolute_error: 0.4989
Epoch 44/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0840 - mean_absolute_error: 0.4988
Epoch 45/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0878 - mean_absolute_error: 0.4989
Epoch 46/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0858 - mean_absolute_error: 0.4990 1s - l
Epoch 47/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0921 - mean_absolute_error: 0.4989
Epoch 48/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0904 - mean_absolute_error: 0.4990
Epoch 49/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0953 - mean_absolute_error: 0.4991
Epoch 50/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0992 - mean_absolute_error: 0.4993
Epoch 51/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1031 - mean_absolute_error: 0.4992
Epoch 52/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1032 - mean_absolute_error: 0.4995
Epoch 53/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1045 - mean_absolute_error: 0.4994
Epoch 54/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1052 - mean_absolute_error: 0.4994
Epoch 55/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1041 - mean_absolute_error: 0.4994
Epoch 56/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1101 - mean_absolute_error: 0.4994
Epoch 57/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1151 - mean_absolute_error: 0.4996
Epoch 58/250
64/64 [==============================] - 2s 32ms/step - loss: -2.1137 - mean_absolute_error: 0.4997
Epoch 59/250
64/64 [==============================] - 2s 32ms/step - loss: -2.1200 - mean_absolute_error: 0.4996
Epoch 60/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0579 - mean_absolute_error: 0.4998
Epoch 61/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0566 - mean_absolute_error: 0.4993
Epoch 62/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0612 - mean_absolute_error: 0.4992
Epoch 63/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0595 - mean_absolute_error: 0.4991
Epoch 64/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0524 - mean_absolute_error: 0.4990
Epoch 65/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0557 - mean_absolute_error: 0.4986
Epoch 66/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0605 - mean_absolute_error: 0.4989
Epoch 67/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0536 - mean_absolute_error: 0.4984
Epoch 68/250
64/64 [==============================] - 2s 37ms/step - loss: -2.0549 - mean_absolute_error: 0.4985
Epoch 69/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0585 - mean_absolute_error: 0.4984
Epoch 70/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0578 - mean_absolute_error: 0.4987
Epoch 71/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0572 - mean_absolute_error: 0.4979
Epoch 72/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0563 - mean_absolute_error: 0.4980
Epoch 73/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0520 - mean_absolute_error: 0.4980
Epoch 74/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0619 - mean_absolute_error: 0.4980
Epoch 75/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0577 - mean_absolute_error: 0.4982
Epoch 76/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0500 - mean_absolute_error: 0.4979
Epoch 77/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0502 - mean_absolute_error: 0.4978
Epoch 78/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0452 - mean_absolute_error: 0.4983
Epoch 79/250
64/64 [==============================] - 2s 39ms/step - loss: -2.0384 - mean_absolute_error: 0.4991
Epoch 80/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1244 - mean_absolute_error: 0.4981
Epoch 81/250
64/64 [==============================] - 2s 37ms/step - loss: -2.1309 - mean_absolute_error: 0.4982
Epoch 82/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1344 - mean_absolute_error: 0.4986
Epoch 83/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1280 - mean_absolute_error: 0.4987
Epoch 84/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1312 - mean_absolute_error: 0.4989
Epoch 85/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1403 - mean_absolute_error: 0.4989
Epoch 86/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1412 - mean_absolute_error: 0.4991
Epoch 87/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1380 - mean_absolute_error: 0.4990
Epoch 88/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1361 - mean_absolute_error: 0.4992
Epoch 89/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1329 - mean_absolute_error: 0.4990
Epoch 90/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1337 - mean_absolute_error: 0.4991
Epoch 91/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1407 - mean_absolute_error: 0.4993
Epoch 92/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1437 - mean_absolute_error: 0.4990
Epoch 93/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1472 - mean_absolute_error: 0.4996
Epoch 94/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1472 - mean_absolute_error: 0.4994
Epoch 95/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1474 - mean_absolute_error: 0.4999
Epoch 96/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1479 - mean_absolute_error: 0.4994
Epoch 97/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1515 - mean_absolute_error: 0.4996
Epoch 98/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1565 - mean_absolute_error: 0.4995
Epoch 99/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1616 - mean_absolute_error: 0.4996
Epoch 100/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1609 - mean_absolute_error: 0.4999
Epoch 101/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1647 - mean_absolute_error: 0.4996
Epoch 102/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1641 - mean_absolute_error: 0.4998
Epoch 103/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1584 - mean_absolute_error: 0.4999
Epoch 104/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1595 - mean_absolute_error: 0.5000
Epoch 105/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1583 - mean_absolute_error: 0.4996
Epoch 106/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1659 - mean_absolute_error: 0.5001
Epoch 107/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1675 - mean_absolute_error: 0.5003
Epoch 108/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1676 - mean_absolute_error: 0.5003
Epoch 109/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1720 - mean_absolute_error: 0.5002
Epoch 110/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1628 - mean_absolute_error: 0.5004
Epoch 111/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1547 - mean_absolute_error: 0.5004
Epoch 112/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1557 - mean_absolute_error: 0.5002
Epoch 113/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1593 - mean_absolute_error: 0.5006
Epoch 114/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1656 - mean_absolute_error: 0.5005
Epoch 115/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1649 - mean_absolute_error: 0.5006
Epoch 116/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1679 - mean_absolute_error: 0.5005
Epoch 117/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1666 - mean_absolute_error: 0.5005
Epoch 118/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1615 - mean_absolute_error: 0.5008
Epoch 119/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1570 - mean_absolute_error: 0.5005
Epoch 120/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1591 - mean_absolute_error: 0.5008
Epoch 121/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1577 - mean_absolute_error: 0.5006
Epoch 122/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1686 - mean_absolute_error: 0.5011
Epoch 123/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1777 - mean_absolute_error: 0.5011
Epoch 124/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1807 - mean_absolute_error: 0.5010
Epoch 125/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1818 - mean_absolute_error: 0.5008
Epoch 126/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1818 - mean_absolute_error: 0.5009
Epoch 127/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1745 - mean_absolute_error: 0.5012
Epoch 128/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1728 - mean_absolute_error: 0.5012
Epoch 129/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1727 - mean_absolute_error: 0.5012
Epoch 130/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1750 - mean_absolute_error: 0.5008
Epoch 131/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1785 - mean_absolute_error: 0.5010
Epoch 132/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1830 - mean_absolute_error: 0.5012
Epoch 133/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1872 - mean_absolute_error: 0.5010
Epoch 134/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1856 - mean_absolute_error: 0.5011
Epoch 135/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1898 - mean_absolute_error: 0.5010
Epoch 136/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1435 - mean_absolute_error: 0.5016
Epoch 137/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0827 - mean_absolute_error: 0.5025
Epoch 138/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0894 - mean_absolute_error: 0.5025
Epoch 139/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0799 - mean_absolute_error: 0.5030
Epoch 140/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0969 - mean_absolute_error: 0.5019
Epoch 141/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0927 - mean_absolute_error: 0.5022
Epoch 142/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1880 - mean_absolute_error: 0.5031
Epoch 143/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1596 - mean_absolute_error: 0.5024
Epoch 144/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1530 - mean_absolute_error: 0.5026
Epoch 145/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1659 - mean_absolute_error: 0.5024
Epoch 146/250
64/64 [==============================] - 2s 32ms/step - loss: -2.1629 - mean_absolute_error: 0.5026
Epoch 147/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1538 - mean_absolute_error: 0.5032
Epoch 148/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1576 - mean_absolute_error: 0.5026
Epoch 149/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1672 - mean_absolute_error: 0.5026
Epoch 150/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1681 - mean_absolute_error: 0.5027
Epoch 151/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1668 - mean_absolute_error: 0.5026
Epoch 152/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1693 - mean_absolute_error: 0.5027
Epoch 153/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1713 - mean_absolute_error: 0.5028
Epoch 154/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1753 - mean_absolute_error: 0.5029
Epoch 155/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1799 - mean_absolute_error: 0.5031
Epoch 156/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1809 - mean_absolute_error: 0.5030
Epoch 157/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1843 - mean_absolute_error: 0.5030
Epoch 158/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1861 - mean_absolute_error: 0.5031
Epoch 159/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1864 - mean_absolute_error: 0.5031
Epoch 160/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1870 - mean_absolute_error: 0.5030
Epoch 161/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1867 - mean_absolute_error: 0.5031
Epoch 162/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1904 - mean_absolute_error: 0.5033
Epoch 163/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1878 - mean_absolute_error: 0.5033
Epoch 164/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1901 - mean_absolute_error: 0.5031
Epoch 165/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1940 - mean_absolute_error: 0.5031
Epoch 166/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1932 - mean_absolute_error: 0.5031
Epoch 167/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1927 - mean_absolute_error: 0.5030
Epoch 168/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1948 - mean_absolute_error: 0.5030
Epoch 169/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1934 - mean_absolute_error: 0.5031
Epoch 170/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1928 - mean_absolute_error: 0.5031
Epoch 171/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1970 - mean_absolute_error: 0.5030
Epoch 172/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1954 - mean_absolute_error: 0.5029
Epoch 173/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1968 - mean_absolute_error: 0.5031 0s - loss: -2.1947 - mean_absolute_err
Epoch 174/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1960 - mean_absolute_error: 0.5030
Epoch 175/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1973 - mean_absolute_error: 0.5032
Epoch 176/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1967 - mean_absolute_error: 0.5029
Epoch 177/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1980 - mean_absolute_error: 0.5029
Epoch 178/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2003 - mean_absolute_error: 0.5028
Epoch 179/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1969 - mean_absolute_error: 0.5029
Epoch 180/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1941 - mean_absolute_error: 0.5029
Epoch 181/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1894 - mean_absolute_error: 0.5030
Epoch 182/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1840 - mean_absolute_error: 0.5033
Epoch 183/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1915 - mean_absolute_error: 0.5028
Epoch 184/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1851 - mean_absolute_error: 0.5029
Epoch 185/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1897 - mean_absolute_error: 0.5038
Epoch 186/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1918 - mean_absolute_error: 0.5036
Epoch 187/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1923 - mean_absolute_error: 0.5033
Epoch 188/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1867 - mean_absolute_error: 0.5033
Epoch 189/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1890 - mean_absolute_error: 0.5030
Epoch 190/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1758 - mean_absolute_error: 0.5029
Epoch 191/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1756 - mean_absolute_error: 0.5026
Epoch 192/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1792 - mean_absolute_error: 0.5028
Epoch 193/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1803 - mean_absolute_error: 0.5027
Epoch 194/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1798 - mean_absolute_error: 0.5025
Epoch 195/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1808 - mean_absolute_error: 0.5024
Epoch 196/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1784 - mean_absolute_error: 0.5027
Epoch 197/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1714 - mean_absolute_error: 0.5024
Epoch 198/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1766 - mean_absolute_error: 0.5024
Epoch 199/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1707 - mean_absolute_error: 0.5026
Epoch 200/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1714 - mean_absolute_error: 0.5025
Epoch 201/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1728 - mean_absolute_error: 0.5024
Epoch 202/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1706 - mean_absolute_error: 0.5024
Epoch 203/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1737 - mean_absolute_error: 0.5023
Epoch 204/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1786 - mean_absolute_error: 0.5024
Epoch 205/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1730 - mean_absolute_error: 0.5021
Epoch 206/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1685 - mean_absolute_error: 0.5029
Epoch 207/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1733 - mean_absolute_error: 0.5030
Epoch 208/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1772 - mean_absolute_error: 0.5027
Epoch 209/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1748 - mean_absolute_error: 0.5023
Epoch 210/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1778 - mean_absolute_error: 0.5025
Epoch 211/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1778 - mean_absolute_error: 0.5022
Epoch 212/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1782 - mean_absolute_error: 0.5023
Epoch 213/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1800 - mean_absolute_error: 0.5023
Epoch 214/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1760 - mean_absolute_error: 0.5023
Epoch 215/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1803 - mean_absolute_error: 0.5024
Epoch 216/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1762 - mean_absolute_error: 0.5027
Epoch 217/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1787 - mean_absolute_error: 0.5020
Epoch 218/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1786 - mean_absolute_error: 0.5022
Epoch 219/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1840 - mean_absolute_error: 0.5023
Epoch 220/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1832 - mean_absolute_error: 0.5022
Epoch 221/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1835 - mean_absolute_error: 0.5023
Epoch 222/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1809 - mean_absolute_error: 0.5025
Epoch 223/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1849 - mean_absolute_error: 0.5026
Epoch 224/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1851 - mean_absolute_error: 0.5024
Epoch 225/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1865 - mean_absolute_error: 0.5023
Epoch 226/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1887 - mean_absolute_error: 0.5023
Epoch 227/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1854 - mean_absolute_error: 0.5024
Epoch 228/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1888 - mean_absolute_error: 0.5024
Epoch 229/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1882 - mean_absolute_error: 0.5022
Epoch 230/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1907 - mean_absolute_error: 0.5024
Epoch 231/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1889 - mean_absolute_error: 0.5023
Epoch 232/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1937 - mean_absolute_error: 0.5025
Epoch 233/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1904 - mean_absolute_error: 0.5024
Epoch 234/250
64/64 [==============================] - 2s 32ms/step - loss: -2.1912 - mean_absolute_error: 0.5026
Epoch 235/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1891 - mean_absolute_error: 0.5025
Epoch 236/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1869 - mean_absolute_error: 0.5027
Epoch 237/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1870 - mean_absolute_error: 0.5032
Epoch 238/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1885 - mean_absolute_error: 0.5033
Epoch 239/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1929 - mean_absolute_error: 0.5030
Epoch 240/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1969 - mean_absolute_error: 0.5032
Epoch 241/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1994 - mean_absolute_error: 0.5029
Epoch 242/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1950 - mean_absolute_error: 0.5033
Epoch 243/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1986 - mean_absolute_error: 0.5030
Epoch 244/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1984 - mean_absolute_error: 0.5029
Epoch 245/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1960 - mean_absolute_error: 0.5031
Epoch 246/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1953 - mean_absolute_error: 0.5032
Epoch 247/250
64/64 [==============================] - 2s 32ms/step - loss: -2.2026 - mean_absolute_error: 0.5032
Epoch 248/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1991 - mean_absolute_error: 0.5033
Epoch 249/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1984 - mean_absolute_error: 0.5035
Epoch 250/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2005 - mean_absolute_error: 0.5036

Training model 2 of 5.
Epoch 1/250
64/64 [==============================] - 5s 47ms/step - loss: 0.1349 - mean_absolute_error: 0.5666
Epoch 2/250
64/64 [==============================] - 2s 33ms/step - loss: -1.4145 - mean_absolute_error: 0.4784
Epoch 3/250
64/64 [==============================] - 2s 33ms/step - loss: -1.8075 - mean_absolute_error: 0.4859
Epoch 4/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8844 - mean_absolute_error: 0.4880
Epoch 5/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9321 - mean_absolute_error: 0.4893
Epoch 6/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9658 - mean_absolute_error: 0.4901
Epoch 7/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9931 - mean_absolute_error: 0.4910
Epoch 8/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0142 - mean_absolute_error: 0.4917
Epoch 9/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0343 - mean_absolute_error: 0.4926
Epoch 10/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0551 - mean_absolute_error: 0.4933
Epoch 11/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0706 - mean_absolute_error: 0.4934
Epoch 12/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0936 - mean_absolute_error: 0.4943
Epoch 13/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1062 - mean_absolute_error: 0.4945
Epoch 14/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1159 - mean_absolute_error: 0.4948
Epoch 15/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1229 - mean_absolute_error: 0.4951
Epoch 16/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1313 - mean_absolute_error: 0.4953
Epoch 17/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1511 - mean_absolute_error: 0.4955
Epoch 18/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1621 - mean_absolute_error: 0.4959
Epoch 19/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1673 - mean_absolute_error: 0.4964
Epoch 20/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1821 - mean_absolute_error: 0.4964
Epoch 21/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1893 - mean_absolute_error: 0.4970
Epoch 22/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1722 - mean_absolute_error: 0.4967
Epoch 23/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1792 - mean_absolute_error: 0.4968
Epoch 24/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1826 - mean_absolute_error: 0.4969
Epoch 25/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1884 - mean_absolute_error: 0.4971
Epoch 26/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2143 - mean_absolute_error: 0.4974
Epoch 27/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2167 - mean_absolute_error: 0.4976
Epoch 28/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2245 - mean_absolute_error: 0.4978
Epoch 29/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2304 - mean_absolute_error: 0.4979
Epoch 30/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2374 - mean_absolute_error: 0.4980
Epoch 31/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2378 - mean_absolute_error: 0.4981
Epoch 32/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2402 - mean_absolute_error: 0.4980
Epoch 33/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2440 - mean_absolute_error: 0.4983
Epoch 34/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2351 - mean_absolute_error: 0.4981
Epoch 35/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2289 - mean_absolute_error: 0.4982
Epoch 36/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2322 - mean_absolute_error: 0.4982
Epoch 37/250
64/64 [==============================] - 2s 37ms/step - loss: -2.2322 - mean_absolute_error: 0.4984
Epoch 38/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2354 - mean_absolute_error: 0.4983
Epoch 39/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2373 - mean_absolute_error: 0.4982
Epoch 40/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2396 - mean_absolute_error: 0.4982
Epoch 41/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2408 - mean_absolute_error: 0.4983
Epoch 42/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2429 - mean_absolute_error: 0.4983
Epoch 43/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2433 - mean_absolute_error: 0.4983
Epoch 44/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2458 - mean_absolute_error: 0.4983
Epoch 45/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2473 - mean_absolute_error: 0.4983
Epoch 46/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2482 - mean_absolute_error: 0.4984
Epoch 47/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2500 - mean_absolute_error: 0.4984
Epoch 48/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2489 - mean_absolute_error: 0.4984
Epoch 49/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2505 - mean_absolute_error: 0.4985
Epoch 50/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2527 - mean_absolute_error: 0.4983
Epoch 51/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2549 - mean_absolute_error: 0.4984
Epoch 52/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2549 - mean_absolute_error: 0.4986
Epoch 53/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2570 - mean_absolute_error: 0.4985
Epoch 54/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2579 - mean_absolute_error: 0.4987
Epoch 55/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2587 - mean_absolute_error: 0.4986
Epoch 56/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2602 - mean_absolute_error: 0.4986
Epoch 57/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2806 - mean_absolute_error: 0.4988
Epoch 58/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2712 - mean_absolute_error: 0.4988
Epoch 59/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2846 - mean_absolute_error: 0.4987
Epoch 60/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2883 - mean_absolute_error: 0.4989
Epoch 61/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2906 - mean_absolute_error: 0.4989
Epoch 62/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3006 - mean_absolute_error: 0.4988
Epoch 63/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3037 - mean_absolute_error: 0.4990
Epoch 64/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3025 - mean_absolute_error: 0.4988
Epoch 65/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3081 - mean_absolute_error: 0.4992
Epoch 66/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3059 - mean_absolute_error: 0.4989
Epoch 67/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2972 - mean_absolute_error: 0.4992
Epoch 68/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3078 - mean_absolute_error: 0.4990
Epoch 69/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3101 - mean_absolute_error: 0.4991
Epoch 70/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3110 - mean_absolute_error: 0.4992
Epoch 71/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3128 - mean_absolute_error: 0.4989
Epoch 72/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3129 - mean_absolute_error: 0.4991
Epoch 73/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3160 - mean_absolute_error: 0.4992
Epoch 74/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3149 - mean_absolute_error: 0.4987
Epoch 75/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3224 - mean_absolute_error: 0.4992
Epoch 76/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3152 - mean_absolute_error: 0.4993
Epoch 77/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3223 - mean_absolute_error: 0.4989
Epoch 78/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3266 - mean_absolute_error: 0.4992
Epoch 79/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3319 - mean_absolute_error: 0.4993
Epoch 80/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3290 - mean_absolute_error: 0.4992
Epoch 81/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3314 - mean_absolute_error: 0.4990
Epoch 82/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3329 - mean_absolute_error: 0.4992
Epoch 83/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3352 - mean_absolute_error: 0.4993
Epoch 84/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3362 - mean_absolute_error: 0.4991
Epoch 85/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3364 - mean_absolute_error: 0.4993
Epoch 86/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3368 - mean_absolute_error: 0.4993
Epoch 87/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3380 - mean_absolute_error: 0.4991
Epoch 88/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3399 - mean_absolute_error: 0.4993
Epoch 89/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3388 - mean_absolute_error: 0.4995
Epoch 90/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3425 - mean_absolute_error: 0.4993
Epoch 91/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3451 - mean_absolute_error: 0.4991
Epoch 92/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3455 - mean_absolute_error: 0.4993
Epoch 93/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3471 - mean_absolute_error: 0.4991
Epoch 94/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3477 - mean_absolute_error: 0.4992
Epoch 95/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3477 - mean_absolute_error: 0.4994
Epoch 96/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3481 - mean_absolute_error: 0.4992
Epoch 97/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3506 - mean_absolute_error: 0.4994
Epoch 98/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3514 - mean_absolute_error: 0.4993
Epoch 99/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3521 - mean_absolute_error: 0.4993
Epoch 100/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3540 - mean_absolute_error: 0.4993
Epoch 101/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3524 - mean_absolute_error: 0.4994
Epoch 102/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3523 - mean_absolute_error: 0.4992
Epoch 103/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3569 - mean_absolute_error: 0.4995
Epoch 104/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3582 - mean_absolute_error: 0.4994
Epoch 105/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3587 - mean_absolute_error: 0.4994
Epoch 106/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3600 - mean_absolute_error: 0.4994
Epoch 107/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3615 - mean_absolute_error: 0.4994
Epoch 108/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3608 - mean_absolute_error: 0.4995
Epoch 109/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3620 - mean_absolute_error: 0.4995
Epoch 110/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3643 - mean_absolute_error: 0.4994
Epoch 111/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3631 - mean_absolute_error: 0.4993
Epoch 112/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3680 - mean_absolute_error: 0.4994
Epoch 113/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3599 - mean_absolute_error: 0.4994
Epoch 114/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3682 - mean_absolute_error: 0.4994 1s - los
Epoch 115/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3685 - mean_absolute_error: 0.4996
Epoch 116/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3700 - mean_absolute_error: 0.4996
Epoch 117/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3719 - mean_absolute_error: 0.4995
Epoch 118/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3716 - mean_absolute_error: 0.4996
Epoch 119/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3737 - mean_absolute_error: 0.4996
Epoch 120/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3742 - mean_absolute_error: 0.4996
Epoch 121/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3758 - mean_absolute_error: 0.4997
Epoch 122/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3763 - mean_absolute_error: 0.4997
Epoch 123/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3764 - mean_absolute_error: 0.4997
Epoch 124/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3780 - mean_absolute_error: 0.4998
Epoch 125/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3792 - mean_absolute_error: 0.4997
Epoch 126/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3778 - mean_absolute_error: 0.4996
Epoch 127/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3813 - mean_absolute_error: 0.4998
Epoch 128/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3791 - mean_absolute_error: 0.4998
Epoch 129/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3832 - mean_absolute_error: 0.4998
Epoch 130/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3835 - mean_absolute_error: 0.4999
Epoch 131/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3840 - mean_absolute_error: 0.4999
Epoch 132/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3855 - mean_absolute_error: 0.5000
Epoch 133/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3868 - mean_absolute_error: 0.5000
Epoch 134/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3864 - mean_absolute_error: 0.4999
Epoch 135/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3889 - mean_absolute_error: 0.5002
Epoch 136/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3885 - mean_absolute_error: 0.5000
Epoch 137/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3905 - mean_absolute_error: 0.5000
Epoch 138/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3908 - mean_absolute_error: 0.5000
Epoch 139/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3866 - mean_absolute_error: 0.5001
Epoch 140/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3951 - mean_absolute_error: 0.5000
Epoch 141/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3690 - mean_absolute_error: 0.5000
Epoch 142/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3653 - mean_absolute_error: 0.5002
Epoch 143/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3646 - mean_absolute_error: 0.5001
Epoch 144/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3674 - mean_absolute_error: 0.5003
Epoch 145/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3649 - mean_absolute_error: 0.5002
Epoch 146/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3642 - mean_absolute_error: 0.5005
Epoch 147/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3640 - mean_absolute_error: 0.5006
Epoch 148/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3648 - mean_absolute_error: 0.5005
Epoch 149/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3625 - mean_absolute_error: 0.5007
Epoch 150/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3630 - mean_absolute_error: 0.5008
Epoch 151/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3632 - mean_absolute_error: 0.5008
Epoch 152/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3619 - mean_absolute_error: 0.5008
Epoch 153/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3604 - mean_absolute_error: 0.5009
Epoch 154/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3617 - mean_absolute_error: 0.5009
Epoch 155/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3603 - mean_absolute_error: 0.5012
Epoch 156/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3597 - mean_absolute_error: 0.5011
Epoch 157/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3598 - mean_absolute_error: 0.5013
Epoch 158/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3594 - mean_absolute_error: 0.5012
Epoch 159/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3569 - mean_absolute_error: 0.5014
Epoch 160/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3594 - mean_absolute_error: 0.5013
Epoch 161/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3586 - mean_absolute_error: 0.5013
Epoch 162/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3578 - mean_absolute_error: 0.5015
Epoch 163/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3567 - mean_absolute_error: 0.5016
Epoch 164/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3563 - mean_absolute_error: 0.5015
Epoch 165/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3564 - mean_absolute_error: 0.5015
Epoch 166/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3561 - mean_absolute_error: 0.5016
Epoch 167/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3564 - mean_absolute_error: 0.5016
Epoch 168/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3561 - mean_absolute_error: 0.5016
Epoch 169/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3544 - mean_absolute_error: 0.5015
Epoch 170/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3560 - mean_absolute_error: 0.5015
Epoch 171/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3554 - mean_absolute_error: 0.5015
Epoch 172/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3525 - mean_absolute_error: 0.5016
Epoch 173/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3540 - mean_absolute_error: 0.5016
Epoch 174/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3533 - mean_absolute_error: 0.5017
Epoch 175/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3520 - mean_absolute_error: 0.5016
Epoch 176/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3496 - mean_absolute_error: 0.5015 1s -
Epoch 177/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3478 - mean_absolute_error: 0.5017
Epoch 178/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3489 - mean_absolute_error: 0.5018
Epoch 179/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3470 - mean_absolute_error: 0.5017
Epoch 180/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3463 - mean_absolute_error: 0.5018
Epoch 181/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3473 - mean_absolute_error: 0.5016
Epoch 182/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3470 - mean_absolute_error: 0.5018
Epoch 183/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3467 - mean_absolute_error: 0.5020
Epoch 184/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3448 - mean_absolute_error: 0.5020
Epoch 185/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3441 - mean_absolute_error: 0.5017
Epoch 186/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3436 - mean_absolute_error: 0.5019
Epoch 187/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3452 - mean_absolute_error: 0.5019
Epoch 188/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3443 - mean_absolute_error: 0.5020
Epoch 189/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3447 - mean_absolute_error: 0.5019
Epoch 190/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3443 - mean_absolute_error: 0.5020
Epoch 191/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3476 - mean_absolute_error: 0.5018
Epoch 192/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3456 - mean_absolute_error: 0.5020
Epoch 193/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3442 - mean_absolute_error: 0.5017
Epoch 194/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3402 - mean_absolute_error: 0.5020
Epoch 195/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3406 - mean_absolute_error: 0.5021
Epoch 196/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3393 - mean_absolute_error: 0.5021
Epoch 197/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3383 - mean_absolute_error: 0.5020
Epoch 198/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3381 - mean_absolute_error: 0.5020
Epoch 199/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3390 - mean_absolute_error: 0.5022
Epoch 200/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3395 - mean_absolute_error: 0.5022
Epoch 201/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3438 - mean_absolute_error: 0.5022
Epoch 202/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3383 - mean_absolute_error: 0.5021
Epoch 203/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3378 - mean_absolute_error: 0.5021
Epoch 204/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3385 - mean_absolute_error: 0.5022
Epoch 205/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3372 - mean_absolute_error: 0.5023
Epoch 206/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3395 - mean_absolute_error: 0.5021
Epoch 207/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3352 - mean_absolute_error: 0.5022
Epoch 208/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3364 - mean_absolute_error: 0.5023
Epoch 209/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3390 - mean_absolute_error: 0.5022
Epoch 210/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3354 - mean_absolute_error: 0.5025
Epoch 211/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3392 - mean_absolute_error: 0.5021
Epoch 212/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3323 - mean_absolute_error: 0.5019
Epoch 213/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3359 - mean_absolute_error: 0.5021
Epoch 214/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3325 - mean_absolute_error: 0.5021
Epoch 215/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3347 - mean_absolute_error: 0.5021
Epoch 216/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3329 - mean_absolute_error: 0.5020
Epoch 217/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3263 - mean_absolute_error: 0.5020
Epoch 218/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3304 - mean_absolute_error: 0.5021
Epoch 219/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3281 - mean_absolute_error: 0.5022
Epoch 220/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3319 - mean_absolute_error: 0.5020
Epoch 221/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3320 - mean_absolute_error: 0.5021
Epoch 222/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3288 - mean_absolute_error: 0.5021
Epoch 223/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3226 - mean_absolute_error: 0.5021
Epoch 224/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3252 - mean_absolute_error: 0.5023
Epoch 225/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3255 - mean_absolute_error: 0.5024
Epoch 226/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3268 - mean_absolute_error: 0.5025
Epoch 227/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3274 - mean_absolute_error: 0.5022
Epoch 228/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3169 - mean_absolute_error: 0.5019
Epoch 229/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3124 - mean_absolute_error: 0.5022
Epoch 230/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3198 - mean_absolute_error: 0.5024
Epoch 231/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3167 - mean_absolute_error: 0.5023
Epoch 232/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3097 - mean_absolute_error: 0.5021
Epoch 233/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3167 - mean_absolute_error: 0.5023
Epoch 234/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3117 - mean_absolute_error: 0.5022
Epoch 235/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3089 - mean_absolute_error: 0.5020
Epoch 236/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3111 - mean_absolute_error: 0.5024
Epoch 237/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3063 - mean_absolute_error: 0.5019
Epoch 238/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3000 - mean_absolute_error: 0.5022
Epoch 239/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3077 - mean_absolute_error: 0.5021
Epoch 240/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2911 - mean_absolute_error: 0.5020
Epoch 241/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2986 - mean_absolute_error: 0.5023
Epoch 242/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2954 - mean_absolute_error: 0.5023
Epoch 243/250
64/64 [==============================] - 2s 32ms/step - loss: -2.2865 - mean_absolute_error: 0.5021
Epoch 244/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2913 - mean_absolute_error: 0.5023
Epoch 245/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2985 - mean_absolute_error: 0.5022
Epoch 246/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2856 - mean_absolute_error: 0.5019
Epoch 247/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2855 - mean_absolute_error: 0.5023
Epoch 248/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3016 - mean_absolute_error: 0.5025
Epoch 249/250
64/64 [==============================] - 2s 32ms/step - loss: -2.2883 - mean_absolute_error: 0.5023
Epoch 250/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2831 - mean_absolute_error: 0.5018

Training model 3 of 5.
Epoch 1/250
64/64 [==============================] - 6s 35ms/step - loss: 6.3971 - mean_absolute_error: 0.5198
Epoch 2/250
64/64 [==============================] - 3s 49ms/step - loss: -1.2546 - mean_absolute_error: 0.4627
Epoch 3/250
64/64 [==============================] - 3s 42ms/step - loss: -1.5099 - mean_absolute_error: 0.4689
Epoch 4/250
64/64 [==============================] - 3s 40ms/step - loss: -1.5950 - mean_absolute_error: 0.4702
Epoch 5/250
64/64 [==============================] - 2s 34ms/step - loss: -1.6479 - mean_absolute_error: 0.4732
Epoch 6/250
64/64 [==============================] - 2s 34ms/step - loss: -1.6875 - mean_absolute_error: 0.4741
Epoch 7/250
64/64 [==============================] - 2s 37ms/step - loss: -1.7199 - mean_absolute_error: 0.4761
Epoch 8/250
64/64 [==============================] - 2s 36ms/step - loss: -1.7513 - mean_absolute_error: 0.4773
Epoch 9/250
64/64 [==============================] - 2s 35ms/step - loss: -1.7726 - mean_absolute_error: 0.4790
Epoch 10/250
64/64 [==============================] - 2s 33ms/step - loss: -1.7932 - mean_absolute_error: 0.4800
Epoch 11/250
64/64 [==============================] - 2s 33ms/step - loss: -1.8125 - mean_absolute_error: 0.4807
Epoch 12/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8290 - mean_absolute_error: 0.4815
Epoch 13/250
64/64 [==============================] - 2s 35ms/step - loss: -1.8444 - mean_absolute_error: 0.4820
Epoch 14/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8589 - mean_absolute_error: 0.4827
Epoch 15/250
64/64 [==============================] - 2s 35ms/step - loss: -1.8715 - mean_absolute_error: 0.4831
Epoch 16/250
64/64 [==============================] - 2s 35ms/step - loss: -1.8841 - mean_absolute_error: 0.4840
Epoch 17/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9007 - mean_absolute_error: 0.4843
Epoch 18/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9151 - mean_absolute_error: 0.4853
Epoch 19/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9251 - mean_absolute_error: 0.4858
Epoch 20/250
64/64 [==============================] - 2s 37ms/step - loss: -1.9371 - mean_absolute_error: 0.4860
Epoch 21/250
64/64 [==============================] - 2s 36ms/step - loss: -1.9483 - mean_absolute_error: 0.4865
Epoch 22/250
64/64 [==============================] - 2s 35ms/step - loss: -1.9603 - mean_absolute_error: 0.4873
Epoch 23/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9675 - mean_absolute_error: 0.4873
Epoch 24/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9798 - mean_absolute_error: 0.4881
Epoch 25/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9887 - mean_absolute_error: 0.4884
Epoch 26/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9953 - mean_absolute_error: 0.4886
Epoch 27/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0012 - mean_absolute_error: 0.4889
Epoch 28/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0105 - mean_absolute_error: 0.4892
Epoch 29/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0172 - mean_absolute_error: 0.4892
Epoch 30/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0224 - mean_absolute_error: 0.4895
Epoch 31/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0294 - mean_absolute_error: 0.4898
Epoch 32/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0352 - mean_absolute_error: 0.4899
Epoch 33/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0429 - mean_absolute_error: 0.4900
Epoch 34/250
64/64 [==============================] - 2s 36ms/step - loss: -2.0465 - mean_absolute_error: 0.4902
Epoch 35/250
64/64 [==============================] - 2s 37ms/step - loss: -2.0514 - mean_absolute_error: 0.4903
Epoch 36/250
64/64 [==============================] - 2s 37ms/step - loss: -2.0592 - mean_absolute_error: 0.4902
Epoch 37/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0637 - mean_absolute_error: 0.4906
Epoch 38/250
64/64 [==============================] - 2s 36ms/step - loss: -2.0676 - mean_absolute_error: 0.4902
Epoch 39/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0724 - mean_absolute_error: 0.4904
Epoch 40/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0739 - mean_absolute_error: 0.4904
Epoch 41/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0776 - mean_absolute_error: 0.4905
Epoch 42/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0817 - mean_absolute_error: 0.4906
Epoch 43/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0854 - mean_absolute_error: 0.4905
Epoch 44/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0875 - mean_absolute_error: 0.4907
Epoch 45/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0914 - mean_absolute_error: 0.4906
Epoch 46/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0949 - mean_absolute_error: 0.4909
Epoch 47/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0956 - mean_absolute_error: 0.4903
Epoch 48/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0975 - mean_absolute_error: 0.4909
Epoch 49/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1008 - mean_absolute_error: 0.4907
Epoch 50/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1020 - mean_absolute_error: 0.4908
Epoch 51/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1073 - mean_absolute_error: 0.4909
Epoch 52/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1078 - mean_absolute_error: 0.4908
Epoch 53/250
64/64 [==============================] - 2s 37ms/step - loss: -2.1132 - mean_absolute_error: 0.4909
Epoch 54/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1132 - mean_absolute_error: 0.4911
Epoch 55/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1176 - mean_absolute_error: 0.4910
Epoch 56/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1181 - mean_absolute_error: 0.4910
Epoch 57/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1165 - mean_absolute_error: 0.4909
Epoch 58/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1191 - mean_absolute_error: 0.4909
Epoch 59/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1218 - mean_absolute_error: 0.4911
Epoch 60/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1235 - mean_absolute_error: 0.4912
Epoch 61/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1248 - mean_absolute_error: 0.4912
Epoch 62/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1256 - mean_absolute_error: 0.4910
Epoch 63/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1290 - mean_absolute_error: 0.4913
Epoch 64/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1331 - mean_absolute_error: 0.4912
Epoch 65/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1348 - mean_absolute_error: 0.4913
Epoch 66/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1351 - mean_absolute_error: 0.4911
Epoch 67/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1347 - mean_absolute_error: 0.4912
Epoch 68/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1349 - mean_absolute_error: 0.4914
Epoch 69/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1384 - mean_absolute_error: 0.4914
Epoch 70/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1392 - mean_absolute_error: 0.4914
Epoch 71/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1413 - mean_absolute_error: 0.4913
Epoch 72/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1423 - mean_absolute_error: 0.4913
Epoch 73/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1458 - mean_absolute_error: 0.4913
Epoch 74/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1445 - mean_absolute_error: 0.4912
Epoch 75/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1462 - mean_absolute_error: 0.4913
Epoch 76/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1464 - mean_absolute_error: 0.4914
Epoch 77/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1472 - mean_absolute_error: 0.4912
Epoch 78/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1501 - mean_absolute_error: 0.4914
Epoch 79/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1513 - mean_absolute_error: 0.4914
Epoch 80/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1527 - mean_absolute_error: 0.4913
Epoch 81/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1561 - mean_absolute_error: 0.4915
Epoch 82/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1548 - mean_absolute_error: 0.4914
Epoch 83/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1525 - mean_absolute_error: 0.4911
Epoch 84/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1544 - mean_absolute_error: 0.4912
Epoch 85/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1578 - mean_absolute_error: 0.4913
Epoch 86/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1596 - mean_absolute_error: 0.4914
Epoch 87/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1613 - mean_absolute_error: 0.4916
Epoch 88/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1596 - mean_absolute_error: 0.4916
Epoch 89/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1599 - mean_absolute_error: 0.4914
Epoch 90/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1610 - mean_absolute_error: 0.4916
Epoch 91/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1628 - mean_absolute_error: 0.4915
Epoch 92/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1647 - mean_absolute_error: 0.4915
Epoch 93/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1670 - mean_absolute_error: 0.4916
Epoch 94/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1670 - mean_absolute_error: 0.4916
Epoch 95/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1668 - mean_absolute_error: 0.4916
Epoch 96/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1653 - mean_absolute_error: 0.4916
Epoch 97/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1681 - mean_absolute_error: 0.4917
Epoch 98/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1692 - mean_absolute_error: 0.4917
Epoch 99/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1703 - mean_absolute_error: 0.4918
Epoch 100/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1724 - mean_absolute_error: 0.4917
Epoch 101/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1749 - mean_absolute_error: 0.4918
Epoch 102/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1751 - mean_absolute_error: 0.4919
Epoch 103/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1766 - mean_absolute_error: 0.4917
Epoch 104/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1753 - mean_absolute_error: 0.4917
Epoch 105/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1735 - mean_absolute_error: 0.4917
Epoch 106/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1750 - mean_absolute_error: 0.4918
Epoch 107/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1754 - mean_absolute_error: 0.4918
Epoch 108/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1805 - mean_absolute_error: 0.4918
Epoch 109/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1803 - mean_absolute_error: 0.4919
Epoch 110/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1814 - mean_absolute_error: 0.4917
Epoch 111/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1782 - mean_absolute_error: 0.4919
Epoch 112/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1797 - mean_absolute_error: 0.4917
Epoch 113/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1820 - mean_absolute_error: 0.4918 1s - loss: -2.18
Epoch 114/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1842 - mean_absolute_error: 0.4919
Epoch 115/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1851 - mean_absolute_error: 0.4921
Epoch 116/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1860 - mean_absolute_error: 0.4918
Epoch 117/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1878 - mean_absolute_error: 0.4918
Epoch 118/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1856 - mean_absolute_error: 0.4919
Epoch 119/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1858 - mean_absolute_error: 0.4919
Epoch 120/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1862 - mean_absolute_error: 0.4921
Epoch 121/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1869 - mean_absolute_error: 0.4920
Epoch 122/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1908 - mean_absolute_error: 0.4920
Epoch 123/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1907 - mean_absolute_error: 0.4919
Epoch 124/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1902 - mean_absolute_error: 0.4923
Epoch 125/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1911 - mean_absolute_error: 0.4921
Epoch 126/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1896 - mean_absolute_error: 0.4919
Epoch 127/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1924 - mean_absolute_error: 0.4919
Epoch 128/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1928 - mean_absolute_error: 0.4920
Epoch 129/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1955 - mean_absolute_error: 0.4922
Epoch 130/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1928 - mean_absolute_error: 0.4920
Epoch 131/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1919 - mean_absolute_error: 0.4920
Epoch 132/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1955 - mean_absolute_error: 0.4919
Epoch 133/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1971 - mean_absolute_error: 0.4921
Epoch 134/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1968 - mean_absolute_error: 0.4921
Epoch 135/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1990 - mean_absolute_error: 0.4922
Epoch 136/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1986 - mean_absolute_error: 0.4922
Epoch 137/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1963 - mean_absolute_error: 0.4922
Epoch 138/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1949 - mean_absolute_error: 0.4919
Epoch 139/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1997 - mean_absolute_error: 0.4919
Epoch 140/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2006 - mean_absolute_error: 0.4922
Epoch 141/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2018 - mean_absolute_error: 0.4922
Epoch 142/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2007 - mean_absolute_error: 0.4922
Epoch 143/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2004 - mean_absolute_error: 0.4921
Epoch 144/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1996 - mean_absolute_error: 0.4921
Epoch 145/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2034 - mean_absolute_error: 0.4922
Epoch 146/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2041 - mean_absolute_error: 0.4920
Epoch 147/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2042 - mean_absolute_error: 0.4922
Epoch 148/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2012 - mean_absolute_error: 0.4919
Epoch 149/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2030 - mean_absolute_error: 0.4922
Epoch 150/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2022 - mean_absolute_error: 0.4922
Epoch 151/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2033 - mean_absolute_error: 0.4921
Epoch 152/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2038 - mean_absolute_error: 0.4922
Epoch 153/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2070 - mean_absolute_error: 0.4922
Epoch 154/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2075 - mean_absolute_error: 0.4923
Epoch 155/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2081 - mean_absolute_error: 0.4921
Epoch 156/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2097 - mean_absolute_error: 0.4922
Epoch 157/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2091 - mean_absolute_error: 0.4923
Epoch 158/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2089 - mean_absolute_error: 0.4923
Epoch 159/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2071 - mean_absolute_error: 0.4923
Epoch 160/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2079 - mean_absolute_error: 0.4924
Epoch 161/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2063 - mean_absolute_error: 0.4922
Epoch 162/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2114 - mean_absolute_error: 0.4923
Epoch 163/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2091 - mean_absolute_error: 0.4924
Epoch 164/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2095 - mean_absolute_error: 0.4922
Epoch 165/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2107 - mean_absolute_error: 0.4923
Epoch 166/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2104 - mean_absolute_error: 0.4920
Epoch 167/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2101 - mean_absolute_error: 0.4922
Epoch 168/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2113 - mean_absolute_error: 0.4920
Epoch 169/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2129 - mean_absolute_error: 0.4923
Epoch 170/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2155 - mean_absolute_error: 0.4923
Epoch 171/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2120 - mean_absolute_error: 0.4923
Epoch 172/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2117 - mean_absolute_error: 0.4922
Epoch 173/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2119 - mean_absolute_error: 0.4924
Epoch 174/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2131 - mean_absolute_error: 0.4924
Epoch 175/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2149 - mean_absolute_error: 0.4926
Epoch 176/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2164 - mean_absolute_error: 0.4925
Epoch 177/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2169 - mean_absolute_error: 0.4924
Epoch 178/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2167 - mean_absolute_error: 0.4923
Epoch 179/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2154 - mean_absolute_error: 0.4924
Epoch 180/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2156 - mean_absolute_error: 0.4926
Epoch 181/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2154 - mean_absolute_error: 0.4925
Epoch 182/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2161 - mean_absolute_error: 0.4925
Epoch 183/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2182 - mean_absolute_error: 0.4925
Epoch 184/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2202 - mean_absolute_error: 0.4925
Epoch 185/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2219 - mean_absolute_error: 0.4924
Epoch 186/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2208 - mean_absolute_error: 0.4926
Epoch 187/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2216 - mean_absolute_error: 0.4926
Epoch 188/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2198 - mean_absolute_error: 0.4925
Epoch 189/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2188 - mean_absolute_error: 0.4925
Epoch 190/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2215 - mean_absolute_error: 0.4925
Epoch 191/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2228 - mean_absolute_error: 0.4923
Epoch 192/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2237 - mean_absolute_error: 0.4927
Epoch 193/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2227 - mean_absolute_error: 0.4924
Epoch 194/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2217 - mean_absolute_error: 0.4924
Epoch 195/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2237 - mean_absolute_error: 0.4924
Epoch 196/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2258 - mean_absolute_error: 0.4923
Epoch 197/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2256 - mean_absolute_error: 0.4926
Epoch 198/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2225 - mean_absolute_error: 0.4924
Epoch 199/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2205 - mean_absolute_error: 0.4925
Epoch 200/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2229 - mean_absolute_error: 0.4926
Epoch 201/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2231 - mean_absolute_error: 0.4926
Epoch 202/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2249 - mean_absolute_error: 0.4926
Epoch 203/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2279 - mean_absolute_error: 0.4926
Epoch 204/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2283 - mean_absolute_error: 0.4927
Epoch 205/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2257 - mean_absolute_error: 0.4926
Epoch 206/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2279 - mean_absolute_error: 0.4927
Epoch 207/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2260 - mean_absolute_error: 0.4927
Epoch 208/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2250 - mean_absolute_error: 0.4926
Epoch 209/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2273 - mean_absolute_error: 0.4925
Epoch 210/250
64/64 [==============================] - 2s 36ms/step - loss: -2.2309 - mean_absolute_error: 0.4927
Epoch 211/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2288 - mean_absolute_error: 0.4926
Epoch 212/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2264 - mean_absolute_error: 0.4927
Epoch 213/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2270 - mean_absolute_error: 0.4927
Epoch 214/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2287 - mean_absolute_error: 0.4926
Epoch 215/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2315 - mean_absolute_error: 0.4928
Epoch 216/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2310 - mean_absolute_error: 0.4928
Epoch 217/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2305 - mean_absolute_error: 0.4929
Epoch 218/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2308 - mean_absolute_error: 0.4928
Epoch 219/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2306 - mean_absolute_error: 0.4928
Epoch 220/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2316 - mean_absolute_error: 0.4930
Epoch 221/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2323 - mean_absolute_error: 0.4930
Epoch 222/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2310 - mean_absolute_error: 0.4929
Epoch 223/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2313 - mean_absolute_error: 0.4931
Epoch 224/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2323 - mean_absolute_error: 0.4931
Epoch 225/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2326 - mean_absolute_error: 0.4932
Epoch 226/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2362 - mean_absolute_error: 0.4932
Epoch 227/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2360 - mean_absolute_error: 0.4930
Epoch 228/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2336 - mean_absolute_error: 0.4931
Epoch 229/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2310 - mean_absolute_error: 0.4930
Epoch 230/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2358 - mean_absolute_error: 0.4933
Epoch 231/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2372 - mean_absolute_error: 0.4932
Epoch 232/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2363 - mean_absolute_error: 0.4932
Epoch 233/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2329 - mean_absolute_error: 0.4933
Epoch 234/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2321 - mean_absolute_error: 0.4932
Epoch 235/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2371 - mean_absolute_error: 0.4933
Epoch 236/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2363 - mean_absolute_error: 0.4933
Epoch 237/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2381 - mean_absolute_error: 0.4935
Epoch 238/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2386 - mean_absolute_error: 0.4935
Epoch 239/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2370 - mean_absolute_error: 0.4934
Epoch 240/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2352 - mean_absolute_error: 0.4935
Epoch 241/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2347 - mean_absolute_error: 0.4936
Epoch 242/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2389 - mean_absolute_error: 0.4935
Epoch 243/250
64/64 [==============================] - 2s 36ms/step - loss: -2.2401 - mean_absolute_error: 0.4937
Epoch 244/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2404 - mean_absolute_error: 0.4937
Epoch 245/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2383 - mean_absolute_error: 0.4936
Epoch 246/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2361 - mean_absolute_error: 0.4937
Epoch 247/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2377 - mean_absolute_error: 0.4937
Epoch 248/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2399 - mean_absolute_error: 0.4938
Epoch 249/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2421 - mean_absolute_error: 0.4939
Epoch 250/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2412 - mean_absolute_error: 0.4937

Training model 4 of 5.
Epoch 1/250
64/64 [==============================] - 19s 104ms/step - loss: -0.3403 - mean_absolute_error: 0.5312
Epoch 2/250
64/64 [==============================] - 2s 33ms/step - loss: -1.3326 - mean_absolute_error: 0.4744
Epoch 3/250
64/64 [==============================] - 2s 34ms/step - loss: -1.6183 - mean_absolute_error: 0.4806
Epoch 4/250
64/64 [==============================] - 2s 34ms/step - loss: -1.7162 - mean_absolute_error: 0.4833
Epoch 5/250
64/64 [==============================] - 2s 33ms/step - loss: -1.7854 - mean_absolute_error: 0.4858
Epoch 6/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8408 - mean_absolute_error: 0.4888
Epoch 7/250
64/64 [==============================] - 2s 34ms/step - loss: -1.8918 - mean_absolute_error: 0.4910
Epoch 8/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9259 - mean_absolute_error: 0.4924
Epoch 9/250
64/64 [==============================] - 2s 35ms/step - loss: -1.9533 - mean_absolute_error: 0.4930
Epoch 10/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9753 - mean_absolute_error: 0.4937
Epoch 11/250
64/64 [==============================] - 3s 40ms/step - loss: -1.9980 - mean_absolute_error: 0.4943
Epoch 12/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0140 - mean_absolute_error: 0.4948
Epoch 13/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0304 - mean_absolute_error: 0.4955
Epoch 14/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0426 - mean_absolute_error: 0.4957
Epoch 15/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0561 - mean_absolute_error: 0.4962
Epoch 16/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0663 - mean_absolute_error: 0.4966
Epoch 17/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0751 - mean_absolute_error: 0.4967
Epoch 18/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0840 - mean_absolute_error: 0.4970
Epoch 19/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0928 - mean_absolute_error: 0.4966
Epoch 20/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0996 - mean_absolute_error: 0.4973
Epoch 21/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1064 - mean_absolute_error: 0.4974
Epoch 22/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1130 - mean_absolute_error: 0.4976
Epoch 23/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1181 - mean_absolute_error: 0.4980
Epoch 24/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1242 - mean_absolute_error: 0.4979
Epoch 25/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1298 - mean_absolute_error: 0.4984
Epoch 26/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1355 - mean_absolute_error: 0.4984
Epoch 27/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1397 - mean_absolute_error: 0.4986
Epoch 28/250
64/64 [==============================] - 2s 38ms/step - loss: -2.1440 - mean_absolute_error: 0.4987
Epoch 29/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1490 - mean_absolute_error: 0.4986
Epoch 30/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1530 - mean_absolute_error: 0.4991
Epoch 31/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1560 - mean_absolute_error: 0.4990
Epoch 32/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1612 - mean_absolute_error: 0.4992
Epoch 33/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1658 - mean_absolute_error: 0.4994
Epoch 34/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1694 - mean_absolute_error: 0.4994
Epoch 35/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1723 - mean_absolute_error: 0.4996
Epoch 36/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1742 - mean_absolute_error: 0.4998
Epoch 37/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1779 - mean_absolute_error: 0.5005
Epoch 38/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1864 - mean_absolute_error: 0.5002
Epoch 39/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1901 - mean_absolute_error: 0.5003
Epoch 40/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1941 - mean_absolute_error: 0.5005
Epoch 41/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1979 - mean_absolute_error: 0.5003
Epoch 42/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2002 - mean_absolute_error: 0.5004
Epoch 43/250
64/64 [==============================] - 2s 36ms/step - loss: -2.2040 - mean_absolute_error: 0.5005
Epoch 44/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2062 - mean_absolute_error: 0.5007
Epoch 45/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2104 - mean_absolute_error: 0.5006
Epoch 46/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2133 - mean_absolute_error: 0.5006
Epoch 47/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2154 - mean_absolute_error: 0.5008
Epoch 48/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2167 - mean_absolute_error: 0.5009
Epoch 49/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2211 - mean_absolute_error: 0.5011
Epoch 50/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2227 - mean_absolute_error: 0.5010
Epoch 51/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2255 - mean_absolute_error: 0.5011
Epoch 52/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2281 - mean_absolute_error: 0.5012
Epoch 53/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2289 - mean_absolute_error: 0.5013
Epoch 54/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2331 - mean_absolute_error: 0.5014
Epoch 55/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2351 - mean_absolute_error: 0.5015
Epoch 56/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2374 - mean_absolute_error: 0.5014
Epoch 57/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2393 - mean_absolute_error: 0.5017
Epoch 58/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2415 - mean_absolute_error: 0.5017
Epoch 59/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2431 - mean_absolute_error: 0.5015
Epoch 60/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2458 - mean_absolute_error: 0.5019
Epoch 61/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2485 - mean_absolute_error: 0.5019
Epoch 62/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2495 - mean_absolute_error: 0.5019
Epoch 63/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2527 - mean_absolute_error: 0.5021
Epoch 64/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2527 - mean_absolute_error: 0.5022
Epoch 65/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2539 - mean_absolute_error: 0.5020
Epoch 66/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2587 - mean_absolute_error: 0.5022
Epoch 67/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2592 - mean_absolute_error: 0.5023
Epoch 68/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2591 - mean_absolute_error: 0.5024
Epoch 69/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2607 - mean_absolute_error: 0.5023
Epoch 70/250
64/64 [==============================] - 2s 36ms/step - loss: -2.2636 - mean_absolute_error: 0.5024
Epoch 71/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2661 - mean_absolute_error: 0.5025
Epoch 72/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2655 - mean_absolute_error: 0.5024
Epoch 73/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2675 - mean_absolute_error: 0.5025
Epoch 74/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2694 - mean_absolute_error: 0.5026
Epoch 75/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2714 - mean_absolute_error: 0.5027
Epoch 76/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2720 - mean_absolute_error: 0.5027
Epoch 77/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2736 - mean_absolute_error: 0.5027
Epoch 78/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2761 - mean_absolute_error: 0.5027
Epoch 79/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2793 - mean_absolute_error: 0.5028
Epoch 80/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2794 - mean_absolute_error: 0.5029
Epoch 81/250
64/64 [==============================] - 2s 36ms/step - loss: -2.2821 - mean_absolute_error: 0.5029
Epoch 82/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2833 - mean_absolute_error: 0.5028
Epoch 83/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2835 - mean_absolute_error: 0.5030
Epoch 84/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2850 - mean_absolute_error: 0.5029
Epoch 85/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2870 - mean_absolute_error: 0.5029
Epoch 86/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2881 - mean_absolute_error: 0.5029
Epoch 87/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2880 - mean_absolute_error: 0.5030
Epoch 88/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2888 - mean_absolute_error: 0.5029
Epoch 89/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2903 - mean_absolute_error: 0.5030
Epoch 90/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2915 - mean_absolute_error: 0.5032
Epoch 91/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2899 - mean_absolute_error: 0.5029
Epoch 92/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2931 - mean_absolute_error: 0.5028
Epoch 93/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2937 - mean_absolute_error: 0.5029
Epoch 94/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2958 - mean_absolute_error: 0.5031
Epoch 95/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2973 - mean_absolute_error: 0.5030
Epoch 96/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2972 - mean_absolute_error: 0.5030
Epoch 97/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2971 - mean_absolute_error: 0.5032
Epoch 98/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2913 - mean_absolute_error: 0.5030
Epoch 99/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2829 - mean_absolute_error: 0.5028
Epoch 100/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2985 - mean_absolute_error: 0.5033
Epoch 101/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3036 - mean_absolute_error: 0.5031
Epoch 102/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3066 - mean_absolute_error: 0.5031
Epoch 103/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3052 - mean_absolute_error: 0.5031
Epoch 104/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3048 - mean_absolute_error: 0.5030
Epoch 105/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3074 - mean_absolute_error: 0.5032
Epoch 106/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3099 - mean_absolute_error: 0.5031
Epoch 107/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3092 - mean_absolute_error: 0.5031
Epoch 108/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3105 - mean_absolute_error: 0.5032
Epoch 109/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3120 - mean_absolute_error: 0.5033
Epoch 110/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3136 - mean_absolute_error: 0.5032
Epoch 111/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3125 - mean_absolute_error: 0.5032
Epoch 112/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3138 - mean_absolute_error: 0.5033
Epoch 113/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3156 - mean_absolute_error: 0.5032
Epoch 114/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3161 - mean_absolute_error: 0.5031
Epoch 115/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3162 - mean_absolute_error: 0.5030
Epoch 116/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3174 - mean_absolute_error: 0.5030
Epoch 117/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3182 - mean_absolute_error: 0.5031
Epoch 118/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3203 - mean_absolute_error: 0.5031
Epoch 119/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3210 - mean_absolute_error: 0.5032
Epoch 120/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3201 - mean_absolute_error: 0.5029
Epoch 121/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3215 - mean_absolute_error: 0.5031
Epoch 122/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3243 - mean_absolute_error: 0.5031
Epoch 123/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3252 - mean_absolute_error: 0.5030
Epoch 124/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3231 - mean_absolute_error: 0.5030
Epoch 125/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3238 - mean_absolute_error: 0.5031
Epoch 126/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3268 - mean_absolute_error: 0.5030
Epoch 127/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3268 - mean_absolute_error: 0.5030
Epoch 128/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3278 - mean_absolute_error: 0.5030
Epoch 129/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3260 - mean_absolute_error: 0.5032
Epoch 130/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3276 - mean_absolute_error: 0.5032
Epoch 131/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3291 - mean_absolute_error: 0.5029
Epoch 132/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3309 - mean_absolute_error: 0.5030
Epoch 133/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3309 - mean_absolute_error: 0.5031
Epoch 134/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3319 - mean_absolute_error: 0.5031
Epoch 135/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3302 - mean_absolute_error: 0.5032
Epoch 136/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3339 - mean_absolute_error: 0.5034
Epoch 137/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3347 - mean_absolute_error: 0.5032
Epoch 138/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3351 - mean_absolute_error: 0.5032
Epoch 139/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3337 - mean_absolute_error: 0.5030
Epoch 140/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3352 - mean_absolute_error: 0.5032
Epoch 141/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3372 - mean_absolute_error: 0.5033
Epoch 142/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3377 - mean_absolute_error: 0.5031
Epoch 143/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3371 - mean_absolute_error: 0.5032
Epoch 144/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3373 - mean_absolute_error: 0.5034
Epoch 145/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3413 - mean_absolute_error: 0.5033
Epoch 146/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3408 - mean_absolute_error: 0.5033
Epoch 147/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3415 - mean_absolute_error: 0.5033
Epoch 148/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3412 - mean_absolute_error: 0.5033
Epoch 149/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3431 - mean_absolute_error: 0.5033
Epoch 150/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3438 - mean_absolute_error: 0.5032
Epoch 151/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3443 - mean_absolute_error: 0.5035
Epoch 152/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3442 - mean_absolute_error: 0.5034
Epoch 153/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3452 - mean_absolute_error: 0.5032
Epoch 154/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3439 - mean_absolute_error: 0.5034
Epoch 155/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3469 - mean_absolute_error: 0.5033
Epoch 156/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3482 - mean_absolute_error: 0.5034
Epoch 157/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3480 - mean_absolute_error: 0.5033
Epoch 158/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3472 - mean_absolute_error: 0.5033
Epoch 159/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3496 - mean_absolute_error: 0.5034
Epoch 160/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3491 - mean_absolute_error: 0.5035
Epoch 161/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3505 - mean_absolute_error: 0.5035
Epoch 162/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3498 - mean_absolute_error: 0.5035
Epoch 163/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3495 - mean_absolute_error: 0.5035
Epoch 164/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3513 - mean_absolute_error: 0.5033
Epoch 165/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3518 - mean_absolute_error: 0.5035
Epoch 166/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3536 - mean_absolute_error: 0.5034
Epoch 167/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3531 - mean_absolute_error: 0.5036
Epoch 168/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3529 - mean_absolute_error: 0.5034
Epoch 169/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3549 - mean_absolute_error: 0.5035
Epoch 170/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3553 - mean_absolute_error: 0.5034
Epoch 171/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3546 - mean_absolute_error: 0.5036
Epoch 172/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3545 - mean_absolute_error: 0.5035
Epoch 173/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3580 - mean_absolute_error: 0.5036
Epoch 174/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3586 - mean_absolute_error: 0.5036
Epoch 175/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3566 - mean_absolute_error: 0.5037
Epoch 176/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3571 - mean_absolute_error: 0.5036
Epoch 177/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3578 - mean_absolute_error: 0.5038
Epoch 178/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3594 - mean_absolute_error: 0.5035
Epoch 179/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3587 - mean_absolute_error: 0.5036
Epoch 180/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3592 - mean_absolute_error: 0.5036
Epoch 181/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3603 - mean_absolute_error: 0.5037
Epoch 182/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3624 - mean_absolute_error: 0.5037
Epoch 183/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3626 - mean_absolute_error: 0.5036
Epoch 184/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3597 - mean_absolute_error: 0.5037
Epoch 185/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3612 - mean_absolute_error: 0.5036
Epoch 186/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3637 - mean_absolute_error: 0.5037
Epoch 187/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3652 - mean_absolute_error: 0.5037
Epoch 188/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3613 - mean_absolute_error: 0.5035
Epoch 189/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3611 - mean_absolute_error: 0.5038
Epoch 190/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3625 - mean_absolute_error: 0.5037
Epoch 191/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3657 - mean_absolute_error: 0.5037
Epoch 192/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3639 - mean_absolute_error: 0.5036
Epoch 193/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3626 - mean_absolute_error: 0.5043
Epoch 194/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3642 - mean_absolute_error: 0.5043
Epoch 195/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3659 - mean_absolute_error: 0.5043
Epoch 196/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3656 - mean_absolute_error: 0.5041
Epoch 197/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3640 - mean_absolute_error: 0.5040
Epoch 198/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3649 - mean_absolute_error: 0.5038
Epoch 199/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3667 - mean_absolute_error: 0.5038
Epoch 200/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3673 - mean_absolute_error: 0.5038
Epoch 201/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3662 - mean_absolute_error: 0.5037
Epoch 202/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3668 - mean_absolute_error: 0.5037
Epoch 203/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3709 - mean_absolute_error: 0.5038
Epoch 204/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3691 - mean_absolute_error: 0.5041
Epoch 205/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3680 - mean_absolute_error: 0.5039
Epoch 206/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3670 - mean_absolute_error: 0.5038
Epoch 207/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3669 - mean_absolute_error: 0.5038
Epoch 208/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3696 - mean_absolute_error: 0.5037
Epoch 209/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3701 - mean_absolute_error: 0.5038
Epoch 210/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3689 - mean_absolute_error: 0.5042
Epoch 211/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3678 - mean_absolute_error: 0.5043
Epoch 212/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3679 - mean_absolute_error: 0.5041
Epoch 213/250
64/64 [==============================] - 2s 37ms/step - loss: -2.3691 - mean_absolute_error: 0.5040
Epoch 214/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3688 - mean_absolute_error: 0.5039
Epoch 215/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3704 - mean_absolute_error: 0.5038
Epoch 216/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3699 - mean_absolute_error: 0.5039
Epoch 217/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3698 - mean_absolute_error: 0.5037
Epoch 218/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3738 - mean_absolute_error: 0.5040
Epoch 219/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3729 - mean_absolute_error: 0.5039
Epoch 220/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3717 - mean_absolute_error: 0.5039
Epoch 221/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3700 - mean_absolute_error: 0.5038
Epoch 222/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3712 - mean_absolute_error: 0.5038
Epoch 223/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3736 - mean_absolute_error: 0.5038
Epoch 224/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3736 - mean_absolute_error: 0.5038
Epoch 225/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3712 - mean_absolute_error: 0.5037
Epoch 226/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3711 - mean_absolute_error: 0.5038
Epoch 227/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3728 - mean_absolute_error: 0.5038
Epoch 228/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3747 - mean_absolute_error: 0.5039
Epoch 229/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3753 - mean_absolute_error: 0.5038
Epoch 230/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3730 - mean_absolute_error: 0.5036
Epoch 231/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3715 - mean_absolute_error: 0.5038
Epoch 232/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3709 - mean_absolute_error: 0.5041
Epoch 233/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3738 - mean_absolute_error: 0.5039
Epoch 234/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3735 - mean_absolute_error: 0.5037
Epoch 235/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3722 - mean_absolute_error: 0.5036
Epoch 236/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3717 - mean_absolute_error: 0.5036
Epoch 237/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3744 - mean_absolute_error: 0.5036
Epoch 238/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3752 - mean_absolute_error: 0.5035
Epoch 239/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3760 - mean_absolute_error: 0.5034
Epoch 240/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3628 - mean_absolute_error: 0.5048
Epoch 241/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3714 - mean_absolute_error: 0.5046
Epoch 242/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3735 - mean_absolute_error: 0.5044
Epoch 243/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3763 - mean_absolute_error: 0.5039
Epoch 244/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3766 - mean_absolute_error: 0.5041
Epoch 245/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3771 - mean_absolute_error: 0.5038
Epoch 246/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3760 - mean_absolute_error: 0.5039
Epoch 247/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3791 - mean_absolute_error: 0.5037
Epoch 248/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3801 - mean_absolute_error: 0.5037
Epoch 249/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3793 - mean_absolute_error: 0.5037
Epoch 250/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3783 - mean_absolute_error: 0.5035

Training model 5 of 5.
Epoch 1/250
64/64 [==============================] - 25s 64ms/step - loss: 187643.4062 - mean_absolute_error: 0.5753
Epoch 2/250
64/64 [==============================] - 2s 33ms/step - loss: 655350.3750 - mean_absolute_error: 0.4811
Epoch 3/250
64/64 [==============================] - 3s 50ms/step - loss: 15.5320 - mean_absolute_error: 0.4887
Epoch 4/250
64/64 [==============================] - 3s 40ms/step - loss: -1.8046 - mean_absolute_error: 0.4907
Epoch 5/250
64/64 [==============================] - 2s 35ms/step - loss: -1.8644 - mean_absolute_error: 0.4918
Epoch 6/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9010 - mean_absolute_error: 0.4929
Epoch 7/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9288 - mean_absolute_error: 0.4937
Epoch 8/250
64/64 [==============================] - 2s 33ms/step - loss: -1.9526 - mean_absolute_error: 0.4944
Epoch 9/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9746 - mean_absolute_error: 0.4947
Epoch 10/250
64/64 [==============================] - 2s 34ms/step - loss: -1.9965 - mean_absolute_error: 0.4951
Epoch 11/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0130 - mean_absolute_error: 0.4961
Epoch 12/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0326 - mean_absolute_error: 0.4958
Epoch 13/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0516 - mean_absolute_error: 0.4963
Epoch 14/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0672 - mean_absolute_error: 0.4968
Epoch 15/250
64/64 [==============================] - 2s 33ms/step - loss: -2.0574 - mean_absolute_error: 0.4971
Epoch 16/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0590 - mean_absolute_error: 0.4974
Epoch 17/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0649 - mean_absolute_error: 0.4976
Epoch 18/250
64/64 [==============================] - 2s 34ms/step - loss: -2.0647 - mean_absolute_error: 0.4975
Epoch 19/250
64/64 [==============================] - 2s 35ms/step - loss: -2.0978 - mean_absolute_error: 0.4972
Epoch 20/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1308 - mean_absolute_error: 0.4980
Epoch 21/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1357 - mean_absolute_error: 0.4980
Epoch 22/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1422 - mean_absolute_error: 0.4985
Epoch 23/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1445 - mean_absolute_error: 0.4984
Epoch 24/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1541 - mean_absolute_error: 0.4985
Epoch 25/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1623 - mean_absolute_error: 0.4991
Epoch 26/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1665 - mean_absolute_error: 0.4990
Epoch 27/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1723 - mean_absolute_error: 0.4991
Epoch 28/250
64/64 [==============================] - 2s 36ms/step - loss: -2.1766 - mean_absolute_error: 0.4992
Epoch 29/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1814 - mean_absolute_error: 0.4994
Epoch 30/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1857 - mean_absolute_error: 0.4996
Epoch 31/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1891 - mean_absolute_error: 0.4995
Epoch 32/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1939 - mean_absolute_error: 0.4995
Epoch 33/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1978 - mean_absolute_error: 0.4998
Epoch 34/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1926 - mean_absolute_error: 0.4995
Epoch 35/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1875 - mean_absolute_error: 0.5000
Epoch 36/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2086 - mean_absolute_error: 0.4995
Epoch 37/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2089 - mean_absolute_error: 0.5000
Epoch 38/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1938 - mean_absolute_error: 0.5000
Epoch 39/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1917 - mean_absolute_error: 0.4997
Epoch 40/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1912 - mean_absolute_error: 0.4999
Epoch 41/250
64/64 [==============================] - 2s 35ms/step - loss: -2.1932 - mean_absolute_error: 0.4997
Epoch 42/250
64/64 [==============================] - 2s 33ms/step - loss: -2.1954 - mean_absolute_error: 0.4998
Epoch 43/250
64/64 [==============================] - 2s 34ms/step - loss: -2.1970 - mean_absolute_error: 0.4996
Epoch 44/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2010 - mean_absolute_error: 0.4998
Epoch 45/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2001 - mean_absolute_error: 0.4997
Epoch 46/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2034 - mean_absolute_error: 0.4996
Epoch 47/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2053 - mean_absolute_error: 0.4997
Epoch 48/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2075 - mean_absolute_error: 0.4998
Epoch 49/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2081 - mean_absolute_error: 0.4997
Epoch 50/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2097 - mean_absolute_error: 0.4996
Epoch 51/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2093 - mean_absolute_error: 0.4996
Epoch 52/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2124 - mean_absolute_error: 0.4997
Epoch 53/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2114 - mean_absolute_error: 0.4997
Epoch 54/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2141 - mean_absolute_error: 0.4999
Epoch 55/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2137 - mean_absolute_error: 0.4996
Epoch 56/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2260 - mean_absolute_error: 0.5001
Epoch 57/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2482 - mean_absolute_error: 0.4997
Epoch 58/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2522 - mean_absolute_error: 0.4999
Epoch 59/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2572 - mean_absolute_error: 0.5002
Epoch 60/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2588 - mean_absolute_error: 0.5004
Epoch 61/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2600 - mean_absolute_error: 0.5001
Epoch 62/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2641 - mean_absolute_error: 0.5004
Epoch 63/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2660 - mean_absolute_error: 0.5001
Epoch 64/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2677 - mean_absolute_error: 0.5003
Epoch 65/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2698 - mean_absolute_error: 0.5004
Epoch 66/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2708 - mean_absolute_error: 0.5000
Epoch 67/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2735 - mean_absolute_error: 0.4998
Epoch 68/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2745 - mean_absolute_error: 0.4997
Epoch 69/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2759 - mean_absolute_error: 0.4996
Epoch 70/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2784 - mean_absolute_error: 0.4996
Epoch 71/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2782 - mean_absolute_error: 0.4996
Epoch 72/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2799 - mean_absolute_error: 0.4995
Epoch 73/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2823 - mean_absolute_error: 0.4995
Epoch 74/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2825 - mean_absolute_error: 0.4996
Epoch 75/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2863 - mean_absolute_error: 0.4995
Epoch 76/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2852 - mean_absolute_error: 0.4995
Epoch 77/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2878 - mean_absolute_error: 0.4994
Epoch 78/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2887 - mean_absolute_error: 0.4996
Epoch 79/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2889 - mean_absolute_error: 0.4995
Epoch 80/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2913 - mean_absolute_error: 0.4996
Epoch 81/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2920 - mean_absolute_error: 0.4997
Epoch 82/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2932 - mean_absolute_error: 0.4997
Epoch 83/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2939 - mean_absolute_error: 0.4996
Epoch 84/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2947 - mean_absolute_error: 0.4997
Epoch 85/250
64/64 [==============================] - 2s 34ms/step - loss: -2.2943 - mean_absolute_error: 0.4999
Epoch 86/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2955 - mean_absolute_error: 0.4995
Epoch 87/250
64/64 [==============================] - 2s 35ms/step - loss: -2.2964 - mean_absolute_error: 0.4997
Epoch 88/250
64/64 [==============================] - 2s 33ms/step - loss: -2.2989 - mean_absolute_error: 0.4995
Epoch 89/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3002 - mean_absolute_error: 0.4998
Epoch 90/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3005 - mean_absolute_error: 0.4996
Epoch 91/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3012 - mean_absolute_error: 0.4996
Epoch 92/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3027 - mean_absolute_error: 0.4997
Epoch 93/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3022 - mean_absolute_error: 0.4996
Epoch 94/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3041 - mean_absolute_error: 0.4997
Epoch 95/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3032 - mean_absolute_error: 0.4996
Epoch 96/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3033 - mean_absolute_error: 0.4995
Epoch 97/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3055 - mean_absolute_error: 0.4996
Epoch 98/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3072 - mean_absolute_error: 0.4997
Epoch 99/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3057 - mean_absolute_error: 0.4995
Epoch 100/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3071 - mean_absolute_error: 0.4995
Epoch 101/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3092 - mean_absolute_error: 0.4995
Epoch 102/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3103 - mean_absolute_error: 0.4996
Epoch 103/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3104 - mean_absolute_error: 0.4995
Epoch 104/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3102 - mean_absolute_error: 0.4994
Epoch 105/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3124 - mean_absolute_error: 0.4996
Epoch 106/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3127 - mean_absolute_error: 0.4998
Epoch 107/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3128 - mean_absolute_error: 0.4995
Epoch 108/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3126 - mean_absolute_error: 0.4994
Epoch 109/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3141 - mean_absolute_error: 0.4995
Epoch 110/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3139 - mean_absolute_error: 0.4994
Epoch 111/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3139 - mean_absolute_error: 0.4996
Epoch 112/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3162 - mean_absolute_error: 0.4995
Epoch 113/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3172 - mean_absolute_error: 0.4995
Epoch 114/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3171 - mean_absolute_error: 0.4995
Epoch 115/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3166 - mean_absolute_error: 0.4996
Epoch 116/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3197 - mean_absolute_error: 0.4995
Epoch 117/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3206 - mean_absolute_error: 0.4995
Epoch 118/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3202 - mean_absolute_error: 0.4996
Epoch 119/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3202 - mean_absolute_error: 0.4996
Epoch 120/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3213 - mean_absolute_error: 0.4998
Epoch 121/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3213 - mean_absolute_error: 0.4996
Epoch 122/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3204 - mean_absolute_error: 0.4996
Epoch 123/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3225 - mean_absolute_error: 0.4997
Epoch 124/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3236 - mean_absolute_error: 0.4995
Epoch 125/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3246 - mean_absolute_error: 0.4997
Epoch 126/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3252 - mean_absolute_error: 0.4996
Epoch 127/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3257 - mean_absolute_error: 0.4997
Epoch 128/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3259 - mean_absolute_error: 0.4998
Epoch 129/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3265 - mean_absolute_error: 0.4997
Epoch 130/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3270 - mean_absolute_error: 0.4998
Epoch 131/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3281 - mean_absolute_error: 0.4996
Epoch 132/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3269 - mean_absolute_error: 0.4997
Epoch 133/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3288 - mean_absolute_error: 0.4997
Epoch 134/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3313 - mean_absolute_error: 0.4998
Epoch 135/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3305 - mean_absolute_error: 0.4998
Epoch 136/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3310 - mean_absolute_error: 0.4998
Epoch 137/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3296 - mean_absolute_error: 0.4998
Epoch 138/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3318 - mean_absolute_error: 0.4998
Epoch 139/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3303 - mean_absolute_error: 0.4997
Epoch 140/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3328 - mean_absolute_error: 0.4998
Epoch 141/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3317 - mean_absolute_error: 0.4999
Epoch 142/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3335 - mean_absolute_error: 0.4999
Epoch 143/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3348 - mean_absolute_error: 0.4998
Epoch 144/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3363 - mean_absolute_error: 0.4999
Epoch 145/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3340 - mean_absolute_error: 0.5000
Epoch 146/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3349 - mean_absolute_error: 0.5000
Epoch 147/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3362 - mean_absolute_error: 0.4999
Epoch 148/250
64/64 [==============================] - 2s 37ms/step - loss: -2.3344 - mean_absolute_error: 0.5002
Epoch 149/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3375 - mean_absolute_error: 0.4998
Epoch 150/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3364 - mean_absolute_error: 0.4999
Epoch 151/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3374 - mean_absolute_error: 0.5000
Epoch 152/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3381 - mean_absolute_error: 0.5000
Epoch 153/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3392 - mean_absolute_error: 0.5001
Epoch 154/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3353 - mean_absolute_error: 0.5001
Epoch 155/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3385 - mean_absolute_error: 0.5002
Epoch 156/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3413 - mean_absolute_error: 0.5000
Epoch 157/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3406 - mean_absolute_error: 0.5000
Epoch 158/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3377 - mean_absolute_error: 0.5001 0s - loss: -2.3362 - mean_absolute_err
Epoch 159/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3393 - mean_absolute_error: 0.5000
Epoch 160/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3406 - mean_absolute_error: 0.5000
Epoch 161/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3430 - mean_absolute_error: 0.5001
Epoch 162/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3432 - mean_absolute_error: 0.5001
Epoch 163/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3444 - mean_absolute_error: 0.5001
Epoch 164/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3442 - mean_absolute_error: 0.5002
Epoch 165/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3440 - mean_absolute_error: 0.5002
Epoch 166/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3439 - mean_absolute_error: 0.5004
Epoch 167/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3438 - mean_absolute_error: 0.5002
Epoch 168/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3464 - mean_absolute_error: 0.5003
Epoch 169/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3461 - mean_absolute_error: 0.5001
Epoch 170/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3463 - mean_absolute_error: 0.5002
Epoch 171/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3459 - mean_absolute_error: 0.5002
Epoch 172/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3476 - mean_absolute_error: 0.5000
Epoch 173/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3451 - mean_absolute_error: 0.5003
Epoch 174/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3452 - mean_absolute_error: 0.5000
Epoch 175/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3456 - mean_absolute_error: 0.5001
Epoch 176/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3479 - mean_absolute_error: 0.5000
Epoch 177/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3490 - mean_absolute_error: 0.5001
Epoch 178/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3462 - mean_absolute_error: 0.5002
Epoch 179/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3491 - mean_absolute_error: 0.5000
Epoch 180/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3501 - mean_absolute_error: 0.5000
Epoch 181/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3503 - mean_absolute_error: 0.5000
Epoch 182/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3517 - mean_absolute_error: 0.5000
Epoch 183/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3526 - mean_absolute_error: 0.5000
Epoch 184/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3508 - mean_absolute_error: 0.5001
Epoch 185/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3513 - mean_absolute_error: 0.5001
Epoch 186/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3517 - mean_absolute_error: 0.5000
Epoch 187/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3507 - mean_absolute_error: 0.5001
Epoch 188/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3499 - mean_absolute_error: 0.5000
Epoch 189/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3511 - mean_absolute_error: 0.5000
Epoch 190/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3520 - mean_absolute_error: 0.5001
Epoch 191/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3520 - mean_absolute_error: 0.5000
Epoch 192/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3529 - mean_absolute_error: 0.5000
Epoch 193/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3538 - mean_absolute_error: 0.4999
Epoch 194/250
64/64 [==============================] - 2s 37ms/step - loss: -2.3526 - mean_absolute_error: 0.5000
Epoch 195/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3537 - mean_absolute_error: 0.5000
Epoch 196/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3537 - mean_absolute_error: 0.4999
Epoch 197/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3551 - mean_absolute_error: 0.4998
Epoch 198/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3565 - mean_absolute_error: 0.4999
Epoch 199/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3568 - mean_absolute_error: 0.5000
Epoch 200/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3580 - mean_absolute_error: 0.4997
Epoch 201/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3595 - mean_absolute_error: 0.4997
Epoch 202/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3577 - mean_absolute_error: 0.4998
Epoch 203/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3596 - mean_absolute_error: 0.4997
Epoch 204/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3616 - mean_absolute_error: 0.4998
Epoch 205/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3597 - mean_absolute_error: 0.4998
Epoch 206/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3613 - mean_absolute_error: 0.4996
Epoch 207/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3609 - mean_absolute_error: 0.4996
Epoch 208/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3619 - mean_absolute_error: 0.4995
Epoch 209/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3616 - mean_absolute_error: 0.4994
Epoch 210/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3620 - mean_absolute_error: 0.4997
Epoch 211/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3604 - mean_absolute_error: 0.4995
Epoch 212/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3598 - mean_absolute_error: 0.4995
Epoch 213/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3635 - mean_absolute_error: 0.4997
Epoch 214/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3634 - mean_absolute_error: 0.4997
Epoch 215/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3643 - mean_absolute_error: 0.4997
Epoch 216/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3643 - mean_absolute_error: 0.4999
Epoch 217/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3648 - mean_absolute_error: 0.4995
Epoch 218/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3593 - mean_absolute_error: 0.5002
Epoch 219/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3657 - mean_absolute_error: 0.4998
Epoch 220/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3670 - mean_absolute_error: 0.4998
Epoch 221/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3682 - mean_absolute_error: 0.4997
Epoch 222/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3691 - mean_absolute_error: 0.4997
Epoch 223/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3690 - mean_absolute_error: 0.4998
Epoch 224/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3693 - mean_absolute_error: 0.4996
Epoch 225/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3697 - mean_absolute_error: 0.4999
Epoch 226/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3693 - mean_absolute_error: 0.4997
Epoch 227/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3713 - mean_absolute_error: 0.4997
Epoch 228/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3709 - mean_absolute_error: 0.4998
Epoch 229/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3730 - mean_absolute_error: 0.4996
Epoch 230/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3709 - mean_absolute_error: 0.4997
Epoch 231/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3735 - mean_absolute_error: 0.4998
Epoch 232/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3733 - mean_absolute_error: 0.4997
Epoch 233/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3733 - mean_absolute_error: 0.4998
Epoch 234/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3759 - mean_absolute_error: 0.4995
Epoch 235/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3758 - mean_absolute_error: 0.4995
Epoch 236/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3753 - mean_absolute_error: 0.4996
Epoch 237/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3751 - mean_absolute_error: 0.4996
Epoch 238/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3746 - mean_absolute_error: 0.4997
Epoch 239/250
64/64 [==============================] - 2s 37ms/step - loss: -2.3739 - mean_absolute_error: 0.4995
Epoch 240/250
64/64 [==============================] - 2s 36ms/step - loss: -2.3761 - mean_absolute_error: 0.4998
Epoch 241/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3747 - mean_absolute_error: 0.4996
Epoch 242/250
64/64 [==============================] - 2s 35ms/step - loss: -2.3748 - mean_absolute_error: 0.4995
Epoch 243/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3759 - mean_absolute_error: 0.4995
Epoch 244/250
64/64 [==============================] - 2s 33ms/step - loss: -2.3746 - mean_absolute_error: 0.4995
Epoch 245/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3774 - mean_absolute_error: 0.4997
Epoch 246/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3777 - mean_absolute_error: 0.4996
Epoch 247/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3759 - mean_absolute_error: 0.4994
Epoch 248/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3770 - mean_absolute_error: 0.4995
Epoch 249/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3782 - mean_absolute_error: 0.4997
Epoch 250/250
64/64 [==============================] - 2s 34ms/step - loss: -2.3782 - mean_absolute_error: 0.4997
Process completed in 2970.69  seconds

Make some training diagnostic plots¶

In [12]:
Copied!
"""
Plot accuracy/loss versus epoch
"""

fig = pyl.figure(figsize=(10,3))

## skip the first n epochs for clarity of the figures
n=40

ax1 = pyl.subplot(121)
for i in range(cn_model.num_models):
    ax1.plot(cn_model.classifiers[i].history['mean_absolute_error'][n:], color='darkslategray', linewidth=2)
ax1.set_title('Model Mean Absolute Error')
ax1.set_ylabel('Mean Absolute Error')
ax1.set_xlabel('Epoch')

ax2 = pyl.subplot(122)
for i in range(cn_model.num_models):
    ax2.plot(cn_model.classifiers[i].history['loss'][n:], color='crimson', linewidth=2)
ax2.set_title('Model Loss')
ax2.set_ylabel('Loss')
ax2.set_xlabel('Epoch')

pyl.show()
pyl.close()
""" Plot accuracy/loss versus epoch """ fig = pyl.figure(figsize=(10,3)) ## skip the first n epochs for clarity of the figures n=40 ax1 = pyl.subplot(121) for i in range(cn_model.num_models): ax1.plot(cn_model.classifiers[i].history['mean_absolute_error'][n:], color='darkslategray', linewidth=2) ax1.set_title('Model Mean Absolute Error') ax1.set_ylabel('Mean Absolute Error') ax1.set_xlabel('Epoch') ax2 = pyl.subplot(122) for i in range(cn_model.num_models): ax2.plot(cn_model.classifiers[i].history['loss'][n:], color='crimson', linewidth=2) ax2.set_title('Model Loss') ax2.set_ylabel('Loss') ax2.set_xlabel('Epoch') pyl.show() pyl.close()
In [13]:
Copied!
## get predictions for test and training samples

preds_test = cn_model.predict(X_test)
preds_train = cn_model.predict(X_train)
## get predictions for test and training samples preds_test = cn_model.predict(X_test) preds_train = cn_model.predict(X_train)
429/429 [==============================] - 1s 2ms/step
429/429 [==============================] - 1s 2ms/step
429/429 [==============================] - 1s 2ms/step
429/429 [==============================] - 1s 2ms/step
429/429 [==============================] - 1s 2ms/step
8148/8148 [==============================] - 13s 2ms/step
8148/8148 [==============================] - 13s 2ms/step
8148/8148 [==============================] - 15s 2ms/step
8148/8148 [==============================] - 14s 2ms/step
8148/8148 [==============================] - 13s 2ms/step
In [14]:
Copied!
# Make some diagnostic plots of the network performance
# Make some diagnostic plots of the network performance
In [15]:
Copied!
## some diagnostic plots!
flux = preds_test[:,0]*Flux_std

bins = np.linspace(0, max(np.max(y_train), np.max(y_test))*Flux_std, 20)

vals = bins[:-1]*0.0
e_vals = np.zeros((len(bins)-1,2))
for i in range(len(bins)-1):
    w = np.where((flux>bins[i])&(flux<bins[i+1]))
    vals[i] = np.median(flux[w]/y_test[w]/Flux_std)
    
    dm = 1.09*preds_test[w, 1]**0.5/preds_test[w, 0]
    e_vals[i, 0] = np.mean(dm)
    e_vals[i, 1] = np.std(dm)
vals = np.array(vals)
e_vals = np.array(e_vals)


## flux prediction vs. known values
fig = pyl.figure(figsize=(20,10))
sp = fig.add_subplot(111)
sp.set_title('Train/Test Flux Predictions', fontsize=22)

pyl.errorbar(y_train*Flux_std, preds_train[:,0]/y_train,
             yerr = preds_train[:, 1]**0.5/y_train, linestyle = 'none', lw=2, marker='o', label = 'train')
pyl.errorbar(y_test*Flux_std, preds_test[:,0]/y_test,
             yerr = preds_test[:, 1]**0.5/y_test, linestyle = 'none', lw=2, marker='o', label='test')



pyl.errorbar((bins[1:]+bins[:-1])/2.0, vals, yerr=e_vals[:,0], linestyle = 'none', lw=3, ms=15, marker='o',c='k', zorder=11)

xlim = sp.get_xlim()
pyl.plot(xlim, [1,1], 'k--',lw=2,zorder=10)

flux_x = np.linspace(0, bins[-1], 50)
snr_est_y = (flux_x*(flux_x+68*900)**-(0.5)) # estimate bg limited SNR, with bg=1300 ADU, and a radius = 1.4*0.7" aperture, or 90 pix
pyl.plot(flux_x, 1.+(1./snr_est_y), 'r--', lw=4, zorder=12)

sp.set_ylim(0.7, 2.0)
pyl.plot(np.array([0.35,0.35])*Flux_std, sp.get_ylim(), zorder=10)
pyl.plot(np.array([0.25,0.25])*Flux_std, sp.get_ylim(), zorder=10, alpha=0.5)
sp.set_xlim(0, xlim[1])

sp.grid(linestyle=':')
pyl.xlabel('Instrumental Flux (ADU)', fontsize=22)
pyl.ylabel('Predict Flux/Plant Flux', fontsize=22)
pyl.xticks(fontsize=22)
pyl.yticks(fontsize=22)
pyl.legend(fontsize=22)
#pyl.savefig('ChapterFluxRegress.png', bbox_inches='tight')


## predicted-planted instrumental magnitude. Haven't spent as much time refining this figure. 

fig = pyl.figure('2', figsize=(20,10))
sp = fig.add_subplot(111)
pyl.scatter(y_train*Flux_std, 1.09*preds_train[:,1]/preds_train[:, 0], label = 'train')
pyl.scatter(y_test*Flux_std, 1.09*preds_test[:,1]/preds_test[:, 0], label='test', alpha=0.5)
pyl.errorbar((bins[1:]+bins[:-1])/2.0, e_vals[:, 0], yerr = e_vals[:, 1], 
             linestyle = 'none', lw=2, marker='o',c='k')
sp.set_ylim(-0.5, 0.5)
pyl.xlabel('Instrumental Flux')
pyl.ylabel('Predict - Plant magnitude')
pyl.legend()

pyl.show()
## some diagnostic plots! flux = preds_test[:,0]*Flux_std bins = np.linspace(0, max(np.max(y_train), np.max(y_test))*Flux_std, 20) vals = bins[:-1]*0.0 e_vals = np.zeros((len(bins)-1,2)) for i in range(len(bins)-1): w = np.where((flux>bins[i])&(flux
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:38: RuntimeWarning: divide by zero encountered in true_divide
In [16]:
Copied!
if save_model:
    cn_model.saveModel(Flux_std, mean, med, std,
                       save_model_path)
    
    with open(f'{save_model_path}/training_data.pickle', 'bw+') as han:
        pickle.dump([X_train, X_test, y_train, y_test, saved_par_dic], han)
if save_model: cn_model.saveModel(Flux_std, mean, med, std, save_model_path) with open(f'{save_model_path}/training_data.pickle', 'bw+') as han: pickle.dump([X_train, X_test, y_train, y_test, saved_par_dic], han)
In [17]:
Copied!
## plot of differences in predicted and planted apparent magnitude 

train_mags = -2.5*np.log10(y_train*Flux_std)
test_mags = -2.5*np.log10(y_test*Flux_std)


pred_train_mags = -2.5*np.log10(preds_train[:, 0]*Flux_std)
pred_test_mags = -2.5*np.log10(preds_test[:, 0]*Flux_std)

w = np.where( ((kb_xys[test_index, -1]+Z_test)>22.5) & ((kb_xys[test_index, -1]+Z_test)<23))


figg = pyl.figure(figsize=(10, 10))
sp = figg.add_subplot(111)

pyl.scatter((kb_xys[train_index, -1]+Z_train), (pred_train_mags-kb_xys[train_index, -1]), alpha=0.2, label='train')
pyl.scatter(kb_xys[test_index, -1]+Z_test, pred_test_mags-kb_xys[test_index, -1], alpha=0.4, label='test')

pyl.legend()

pyl.plot([22,27], [0,0], 'k--', zorder=10)
pyl.xlabel('m_r planted')
pyl.ylabel('delta m')
sp.set_ylim(-0.5,0.5)
sp.set_yticks(np.arange(-0.5,0.5,0.025))

pyl.grid(linestyle=':')
## plot of differences in predicted and planted apparent magnitude train_mags = -2.5*np.log10(y_train*Flux_std) test_mags = -2.5*np.log10(y_test*Flux_std) pred_train_mags = -2.5*np.log10(preds_train[:, 0]*Flux_std) pred_test_mags = -2.5*np.log10(preds_test[:, 0]*Flux_std) w = np.where( ((kb_xys[test_index, -1]+Z_test)>22.5) & ((kb_xys[test_index, -1]+Z_test)<23)) figg = pyl.figure(figsize=(10, 10)) sp = figg.add_subplot(111) pyl.scatter((kb_xys[train_index, -1]+Z_train), (pred_train_mags-kb_xys[train_index, -1]), alpha=0.2, label='train') pyl.scatter(kb_xys[test_index, -1]+Z_test, pred_test_mags-kb_xys[test_index, -1], alpha=0.4, label='test') pyl.legend() pyl.plot([22,27], [0,0], 'k--', zorder=10) pyl.xlabel('m_r planted') pyl.ylabel('delta m') sp.set_ylim(-0.5,0.5) sp.set_yticks(np.arange(-0.5,0.5,0.025)) pyl.grid(linestyle=':')
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:7: RuntimeWarning: invalid value encountered in log10
  import sys
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: invalid value encountered in log10
  

Now read in validate visit 2022-08-24-AS1 and see how well the machine does¶

In [18]:
Copied!
visits_validate = ['2022-08-24-AS1']

chips = []
for c in np.arange(0, 40):#
    chips.append(str(c).zfill(2))

stamp_files_validate, fs_validate, kb_xys_validate, zeropoints_validate = [], [], [], []
counter = 0
for j, v in enumerate(visits_validate):
    for i, c in enumerate(chips):
        
        stamps_path = f'{warps_path}/{v}'
        plantLists_path = f'{warps_path}/{v}/'
        kbmod_results_path = f'./kbmod_results/{v}/results_{c}/'

        stamp_files_validate.append(f'{stamps_path}/stamps{gridType}_{c}_w_sr.pickle')

        zpo = zpos[v][c]
                    
        ### load the kbmod results
        kb_xy = []
        with open(f'{kbmod_results_path}/results_.txt') as han:
            data = han.readlines()

        for ii in range(len(data)):
            s = data[ii].split()
            x, y = float(s[5]), float(s[7])
            repeat = False
            for jj in range(len(kb_xy)):
                if kb_xy[jj][0]==x and kb_xy[jj][1]==y:
                    repeat = True
                    break
            if not repeat:
                kb_xy.append([float(s[5]) , float(s[7]) , float(s[9]), float(s[11]), float(s[1]), 0.0])
        kb_xy = np.array(kb_xy)
        
        ### load the plantlist sources
        p_xy = []
        plantLists = glob.glob(f'{plantLists_path}/{c}/*plantList')
        plantLists.sort()

        with open(plantLists[0]) as han:
            data = han.readlines()
                
        for ii in range(1,len(data)):
            s = data[ii].split()
            x,y = float(s[3]), float(s[4])
            rate = float(s[5])*24./0.187
            repeat = False
            for jj in range(len(p_xy)):
                if p_xy[jj][0] == x and p_xy[jj][1]==y:
                    p_xy[jj][2]-=0.75
                    repeat = True

            if not repeat:
                p_xy.append([x, y, float(s[9]), rate, 0])
                
        if len(p_xy)>0:
            p_xy = np.array(p_xy)
            p_xy = p_xy[np.argsort(p_xy[:,2])]
            p_xy = p_xy[np.where((p_xy[:,2]>nukeBright)&(p_xy[:,2]<nukeFaint))]

            #label the good and bad sources
            for ii in range(len(p_xy)):
                d = ((p_xy[ii, 0] - kb_xy[:, 0])**2 + (p_xy[ii, 1] - kb_xy[:, 1])**2 )**0.5
                d_rate = (p_xy[ii, 3] - (kb_xy[:, 2]**2 + kb_xy[:, 3]**2)**0.5)
                ww = np.where((d<dist_lim)&(np.abs(d_rate)<rate_diff_lim))
                if len(ww[0])>0:
                    for arg in ww[0]:
                        kb_xy[arg,-1] = p_xy[ii,2]-zpo
                        
        w_good = np.where(kb_xy[:,-1]!=0)
        
        #load the stamps
        with open(stamp_files_validate[-1], 'rb') as han:
            f = pickle.load(han)
        
        if rots[counter%len(chips)]!=0:# and rots[counter%len(chips)]!=2:
            f = np.rot90(f, k=-rots[counter%len(chips)], axes=(1, 2))
        counter+=1

        ### clip to avoid the crazy min pixel values
        f = np.clip(f, -3500., np.max(f))
        f_med = np.nanmedian(f)
        f = f[w_good]
        kb_xy = kb_xy[w_good]

        
        fs_validate.append(f)
        kb_xys_validate.append(kb_xy)
        zeropoints_validate.append(np.zeros(len(f), dtype='float64')+zpo)
        print(v, c,f.shape)

sns_frames_validate = np.concatenate(fs_validate)
kb_xys_validate = np.concatenate(kb_xys_validate)
zeropoints_validate = np.concatenate(zeropoints_validate)

del fs_validate

sns_frames_validate = sns_frames_validate.astype(image_data_type)

sns_labels_validate = 10.0**(-0.4*kb_xys_validate[:, -1])


sns_labels_validate = sns_labels_validate/Flux_std

normed_sns_frames_validate = sns_frames_validate
mean_validate,std_validate = np.nanmean(normed_sns_frames_validate), np.nanstd(normed_sns_frames_validate)
normed_sns_frames_validate -= mean_validate
normed_sns_frames_validate /= std
print('Normalized frame min and max:', np.nanmin(normed_sns_frames_validate), np.nanmax(normed_sns_frames_validate),'\n')
print(std,std_validate)


normed_sns_frames_validate = np.expand_dims(normed_sns_frames_validate, axis=-1)

preds_validate = cn_model.predict(normed_sns_frames_validate)
print(preds_validate)

fig = pyl.figure(figsize=(20,10))
sp = fig.add_subplot(111)
pyl.errorbar(sns_labels_validate*Flux_std, preds_validate[:, 0]/sns_labels_validate,
             yerr = preds_validate[:, 1]**0.5/(sns_labels_validate), 
             linestyle = 'none', lw=2, marker='o', label = 'validate', alpha=0.5)

flux_x = np.linspace(0, np.max(sns_labels_validate*Flux_std), 100)
snr_est_y = (flux_x*(flux_x+68*900)**-(0.5)) # estimate bg limited SNR, with bg=1300 ADU, and a radius = 1.4*0.7" aperture, or 90 pix
pyl.plot(flux_x, 1.+(1./snr_est_y), 'r--', lw=4, zorder=12)

pyl.grid(linestyle=':')
xlim = sp.get_xlim()
pyl.plot([0,xlim[1]], [1., 1.], 'k--', lw=2, zorder=10)
sp.set_xlim(0.0, xlim[1])
sp.set_ylim(0.7, 2.0)
pyl.xlabel('Instrumental Flux (ADU)', fontsize=22)
pyl.ylabel('Predict Flux/Plant Flux', fontsize=22)
pyl.title('Validation Flux Predictions', fontsize=22)
pyl.xticks(fontsize=22)
pyl.yticks(fontsize=22)
#pyl.savefig('ChapterRegressValidate.pdf', bbox_inches='tight')
visits_validate = ['2022-08-24-AS1'] chips = [] for c in np.arange(0, 40):# chips.append(str(c).zfill(2)) stamp_files_validate, fs_validate, kb_xys_validate, zeropoints_validate = [], [], [], [] counter = 0 for j, v in enumerate(visits_validate): for i, c in enumerate(chips): stamps_path = f'{warps_path}/{v}' plantLists_path = f'{warps_path}/{v}/' kbmod_results_path = f'./kbmod_results/{v}/results_{c}/' stamp_files_validate.append(f'{stamps_path}/stamps{gridType}_{c}_w_sr.pickle') zpo = zpos[v][c] ### load the kbmod results kb_xy = [] with open(f'{kbmod_results_path}/results_.txt') as han: data = han.readlines() for ii in range(len(data)): s = data[ii].split() x, y = float(s[5]), float(s[7]) repeat = False for jj in range(len(kb_xy)): if kb_xy[jj][0]==x and kb_xy[jj][1]==y: repeat = True break if not repeat: kb_xy.append([float(s[5]) , float(s[7]) , float(s[9]), float(s[11]), float(s[1]), 0.0]) kb_xy = np.array(kb_xy) ### load the plantlist sources p_xy = [] plantLists = glob.glob(f'{plantLists_path}/{c}/*plantList') plantLists.sort() with open(plantLists[0]) as han: data = han.readlines() for ii in range(1,len(data)): s = data[ii].split() x,y = float(s[3]), float(s[4]) rate = float(s[5])*24./0.187 repeat = False for jj in range(len(p_xy)): if p_xy[jj][0] == x and p_xy[jj][1]==y: p_xy[jj][2]-=0.75 repeat = True if not repeat: p_xy.append([x, y, float(s[9]), rate, 0]) if len(p_xy)>0: p_xy = np.array(p_xy) p_xy = p_xy[np.argsort(p_xy[:,2])] p_xy = p_xy[np.where((p_xy[:,2]>nukeBright)&(p_xy[:,2]0: for arg in ww[0]: kb_xy[arg,-1] = p_xy[ii,2]-zpo w_good = np.where(kb_xy[:,-1]!=0) #load the stamps with open(stamp_files_validate[-1], 'rb') as han: f = pickle.load(han) if rots[counter%len(chips)]!=0:# and rots[counter%len(chips)]!=2: f = np.rot90(f, k=-rots[counter%len(chips)], axes=(1, 2)) counter+=1 ### clip to avoid the crazy min pixel values f = np.clip(f, -3500., np.max(f)) f_med = np.nanmedian(f) f = f[w_good] kb_xy = kb_xy[w_good] fs_validate.append(f) kb_xys_validate.append(kb_xy) zeropoints_validate.append(np.zeros(len(f), dtype='float64')+zpo) print(v, c,f.shape) sns_frames_validate = np.concatenate(fs_validate) kb_xys_validate = np.concatenate(kb_xys_validate) zeropoints_validate = np.concatenate(zeropoints_validate) del fs_validate sns_frames_validate = sns_frames_validate.astype(image_data_type) sns_labels_validate = 10.0**(-0.4*kb_xys_validate[:, -1]) sns_labels_validate = sns_labels_validate/Flux_std normed_sns_frames_validate = sns_frames_validate mean_validate,std_validate = np.nanmean(normed_sns_frames_validate), np.nanstd(normed_sns_frames_validate) normed_sns_frames_validate -= mean_validate normed_sns_frames_validate /= std print('Normalized frame min and max:', np.nanmin(normed_sns_frames_validate), np.nanmax(normed_sns_frames_validate),'\n') print(std,std_validate) normed_sns_frames_validate = np.expand_dims(normed_sns_frames_validate, axis=-1) preds_validate = cn_model.predict(normed_sns_frames_validate) print(preds_validate) fig = pyl.figure(figsize=(20,10)) sp = fig.add_subplot(111) pyl.errorbar(sns_labels_validate*Flux_std, preds_validate[:, 0]/sns_labels_validate, yerr = preds_validate[:, 1]**0.5/(sns_labels_validate), linestyle = 'none', lw=2, marker='o', label = 'validate', alpha=0.5) flux_x = np.linspace(0, np.max(sns_labels_validate*Flux_std), 100) snr_est_y = (flux_x*(flux_x+68*900)**-(0.5)) # estimate bg limited SNR, with bg=1300 ADU, and a radius = 1.4*0.7" aperture, or 90 pix pyl.plot(flux_x, 1.+(1./snr_est_y), 'r--', lw=4, zorder=12) pyl.grid(linestyle=':') xlim = sp.get_xlim() pyl.plot([0,xlim[1]], [1., 1.], 'k--', lw=2, zorder=10) sp.set_xlim(0.0, xlim[1]) sp.set_ylim(0.7, 2.0) pyl.xlabel('Instrumental Flux (ADU)', fontsize=22) pyl.ylabel('Predict Flux/Plant Flux', fontsize=22) pyl.title('Validation Flux Predictions', fontsize=22) pyl.xticks(fontsize=22) pyl.yticks(fontsize=22) #pyl.savefig('ChapterRegressValidate.pdf', bbox_inches='tight')
2022-08-24-AS1 00 (61, 43, 43)
2022-08-24-AS1 01 (50, 43, 43)
2022-08-24-AS1 02 (54, 43, 43)
2022-08-24-AS1 03 (62, 43, 43)
2022-08-24-AS1 04 (50, 43, 43)
2022-08-24-AS1 05 (69, 43, 43)
2022-08-24-AS1 06 (63, 43, 43)
2022-08-24-AS1 07 (60, 43, 43)
2022-08-24-AS1 08 (60, 43, 43)
2022-08-24-AS1 09 (57, 43, 43)
2022-08-24-AS1 10 (55, 43, 43)
2022-08-24-AS1 11 (52, 43, 43)
2022-08-24-AS1 12 (68, 43, 43)
2022-08-24-AS1 13 (52, 43, 43)
2022-08-24-AS1 14 (68, 43, 43)
2022-08-24-AS1 15 (60, 43, 43)
2022-08-24-AS1 16 (62, 43, 43)
2022-08-24-AS1 17 (64, 43, 43)
2022-08-24-AS1 18 (56, 43, 43)
2022-08-24-AS1 19 (52, 43, 43)
2022-08-24-AS1 20 (60, 43, 43)
2022-08-24-AS1 21 (59, 43, 43)
2022-08-24-AS1 22 (55, 43, 43)
2022-08-24-AS1 23 (57, 43, 43)
2022-08-24-AS1 24 (50, 43, 43)
2022-08-24-AS1 25 (63, 43, 43)
2022-08-24-AS1 26 (55, 43, 43)
2022-08-24-AS1 27 (58, 43, 43)
2022-08-24-AS1 28 (56, 43, 43)
2022-08-24-AS1 29 (58, 43, 43)
2022-08-24-AS1 30 (59, 43, 43)
2022-08-24-AS1 31 (52, 43, 43)
2022-08-24-AS1 32 (50, 43, 43)
2022-08-24-AS1 33 (47, 43, 43)
2022-08-24-AS1 34 (50, 43, 43)
2022-08-24-AS1 35 (41, 43, 43)
2022-08-24-AS1 36 (59, 43, 43)
2022-08-24-AS1 37 (74, 43, 43)
2022-08-24-AS1 38 (67, 43, 43)
2022-08-24-AS1 39 (47, 43, 43)
Normalized frame min and max: -13.106255 30.085432 

14.035528 10.967248
72/72 [==============================] - 0s 3ms/step
72/72 [==============================] - 0s 2ms/step
72/72 [==============================] - 0s 2ms/step
72/72 [==============================] - 0s 2ms/step
72/72 [==============================] - 0s 2ms/step
[[3.1897764e+00 3.6643110e-02]
 [3.0283675e+00 1.8730829e-02]
 [2.8002067e+00 1.0425494e-01]
 ...
 [1.0674439e-01 1.6833793e-03]
 [9.5082417e-02 1.3452958e-03]
 [1.8484716e-01 3.3594933e-03]]
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:128: RuntimeWarning: divide by zero encountered in true_divide
Out[18]:
(array([0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. ]),
 [Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, ''),
  Text(0, 0, '')])
In [ ]:
Copied!

Previous

Built with MkDocs using a theme provided by Read the Docs.
« Previous